Cargando…

Hybrid offline/online methods for optimization under uncertainty /

Balancing the solution-quality/time trade-off and optimizing problems which feature offline and online phases can deliver significant improvements in efficiency and budget control. Offline/online integration yields benefits by achieving high quality solutions while reducing online computation time....

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: De Filippo, Allegra (Autor)
Autor Corporativo: IOS Press
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam, Netherlands : IOS Press, 2022.
Colección:Frontiers in artificial intelligence and applications ; v. 349.
Frontiers in artificial intelligence and applications. Dissertations in artificial intelligence.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ii 4500
001 EBSCO_on1317842369
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 220518s2022 ne ob 000 0 eng d
040 |a IOSPR  |b eng  |e rda  |e pn  |c IOSPR  |d N$T  |d EBLCP  |d OCLCF  |d OCLCQ  |d UBY 
020 |a 9781643682631  |q (electronic bk.) 
020 |a 1643682636  |q (electronic bk.) 
020 |z 9781643682624  |q (print) 
035 |a (OCoLC)1317842369 
037 |a 9781643682631  |b IOS Press  |n http://www.iospress.nl 
050 4 |a QA402.5 
082 0 4 |a 519.6  |2 23 
049 |a UAMI 
100 1 |a De Filippo, Allegra,  |e author. 
245 1 0 |a Hybrid offline/online methods for optimization under uncertainty /  |c Allegra De Filippo. 
264 1 |a Amsterdam, Netherlands :  |b IOS Press,  |c 2022. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Frontiers in artificial intelligence and applications ;  |v volume 349 
490 1 |a Dissertations in artificial intelligence 
504 |a Includes bibliographical references. 
588 0 |a Online resource; title from PDF title page (IOS Press, viewed May 18, 2022). 
505 0 |a Intro -- Title Page -- Abstract -- Contents -- Introduction -- Context -- Contribution -- Outline -- Related Work -- Optimization Under Uncertainty -- Robust Optimization -- Stochastic Optimization and Sequential Decision Problems -- Sampling and Sample Average Approximation -- Two-Stage Stochastic Programming -- Multistage Stochastic Programming -- Stochastic Dynamic Programming -- Markov Decision Processes -- Towards Online Stochastic Optimization -- Online Stochastic Optimization -- Online Anticipatory Algorithms -- Integrated Offline/Online Decision-Making in Complex Systems 
505 8 |a Motivating Examples -- Offline/Online Models -- Optimization Models under Uncertainty for EMS -- Distributed Generation and Virtual Power Plants -- Optimization Techniques -- Offline/Online Integration in Optimization under Uncertainty -- Introduction -- Strategic and Operational Decisions -- Model Description and Motivations -- Baseline Model: Formal Description -- Flattened Problem -- Offline Problem -- Online Heuristic -- Improving Offline/Online Integration Methods -- ANTICIPATE -- TUNING -- ACKNOWLEDGE -- ACTIVE -- Method Comparison -- Instantiating the Integrated Offline/Online Methods 
505 8 |a Distributed Energy System: the Virtual Power Plant Case Study -- Instantiating the Baseline Model -- Instantiating ANTICIPATE -- Instantiating TUNING -- Instantiating ACKNOWLEDGE -- Instantiating ACTIVE -- Results for the VPP -- Experimental Setup -- Discussion -- The Vehicle Routing Problem Case Study -- Instantiating the Baseline Model -- Instantiating ANTICIPATE -- Instantiating TUNING -- Instantiating ACKNOWLEDGE -- Instantiating ACTIVE -- Results for the VRP -- Experimental Setup -- Discussion -- Trade-Offs of Online Anticipatory Algorithms -- Introduction 
505 8 |a Motivations of ``Taming"" an Online Anticipatory Algorithm -- Offline Information Availability -- Building Block Techniques -- Probability Estimation for Scenario Sampling -- Building a Contingency Table -- Efficient Online Fixing Heuristic -- Deriving the FIXING Heuristic -- Formal Method Description -- ANTICIPATE-D -- CONTINGENCY -- CONTINGENCY-D -- Instantiating the Methods -- Instantiating the Methods for the VPP Energy Problem -- Instantiating the Baseline Model -- The Models of Uncertainty -- Instantiating ANTICIPATE -- Instantiating ANTICIPATE-D -- Instantiating CONTINGENCY 
505 8 |a Instantiating CONTINGENCY-D -- Results for the VPP -- Experimental Setup -- Discussion -- The Traveling Salesman Problem Case Study -- Instantiating the Baseline Model -- The Models of Uncertainty -- Instantiating ANTICIPATE -- Results for the TSP -- Experimental Setup -- Discussion -- Concluding Remarks & Future Works -- Bibliography 
520 |a Balancing the solution-quality/time trade-off and optimizing problems which feature offline and online phases can deliver significant improvements in efficiency and budget control. Offline/online integration yields benefits by achieving high quality solutions while reducing online computation time. This book considers multi-stage optimization problems under uncertainty and proposes various methods that have broad applicability. Due to the complexity of the task, the most popular approaches depend on the temporal granularity of the decisions to be made and are, in general, sampling-based methods and heuristics. Long-term strategic decisions that may have a major impact are typically solved using these more accurate, but expensive, sampling-based approaches. Short-term operational decisions often need to be made over multiple steps within a short time frame and are commonly addressed via polynomial-time heuristics, with the more advanced sampling-based methods only being applicable if their computational cost can be carefully managed. Despite being strongly interconnected, these 2 phases are typically solved in isolation. In the first part of the book, general methods based on a tighter integration between the two phases are proposed and their applicability explored, and these may lead to significant improvements. The second part of the book focuses on how to manage the cost/quality trade-off of online stochastic anticipatory algorithms, taking advantage of some offline information. All the methods proposed here provide multiple options to balance the quality/time trade-off in optimization problems that involve offline and online phases, and are suitable for a variety of practical application scenarios.--  |c Provided by publisher. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Mathematical optimization. 
650 0 |a Uncertainty (Information theory) 
650 7 |a Mathematical optimization.  |2 fast  |0 (OCoLC)fst01012099 
650 7 |a Uncertainty (Information theory)  |2 fast  |0 (OCoLC)fst01160838 
710 2 |a IOS Press. 
830 0 |a Frontiers in artificial intelligence and applications ;  |v v. 349. 
830 0 |a Frontiers in artificial intelligence and applications.  |p Dissertations in artificial intelligence. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=3283623  |z Texto completo 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL29238885 
938 |a EBSCOhost  |b EBSC  |n 3283623 
994 |a 92  |b IZTAP