|
|
|
|
LEADER |
00000cam a2200000Ii 4500 |
001 |
EBSCO_on1317772343 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
220517s2022 ne o 000 0 eng d |
040 |
|
|
|a IOSPR
|b eng
|e rda
|e pn
|c IOSPR
|d N$T
|d EBLCP
|d OCLCF
|d OCLCQ
|d OCLCO
|
020 |
|
|
|a 9781643682679
|q (electronic bk.)
|
020 |
|
|
|a 1643682679
|q (electronic bk.)
|
020 |
|
|
|z 9781643682662
|q (print)
|
035 |
|
|
|a (OCoLC)1317772343
|
037 |
|
|
|a 9781643682679
|b IOS Press
|n http://www.iospress.nl
|
050 |
|
4 |
|a Q325.5
|
082 |
0 |
4 |
|a 006.3/1
|2 23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Morettin, Paolo,
|e author.
|
245 |
1 |
0 |
|a Learning and reasoning in hybrid structured spaces /
|c Paolo Morettin.
|
264 |
|
1 |
|a Amsterdam, Netherlands :
|b IOS Press,
|c 2022.
|
300 |
|
|
|a 1 online resource.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Frontiers in artificial intelligence and applications ;
|v volume 350
|
588 |
0 |
|
|a Online resource; title from] PDF title page (IOS Press, viewed May 17, 2022).
|
505 |
0 |
|
|a Intro -- Title Page -- Abstract -- Acknowledgments -- Contents -- Introduction -- Motivation -- Contributions -- Outline of the Thesis -- Background -- Probabilistic Graphical Models -- Bayesian Networks -- Markov Networks -- Factor graphs -- The belief propagation algorithm -- Inference by Weighted Model Counting -- Propositional satisfiability -- Weighted Model Counting -- Logical structure -- Inference by Weighted Model Integration -- Satisfiability Modulo Theories -- Weighted Model Integration -- Related work -- Modelling and inference -- Learning -- WMI-PA -- Predicate Abstraction
|
505 |
8 |
|
|a Weighted Model Integration, Revisited -- Basic case: WMI Without Atomic Propositions -- General Case: WMI With Atomic Propositions -- Conditional Weight Functions -- From WMI to WMIold and vice versa -- A Case Study -- Modelling a journey with a fixed path -- Modelling a journey under a conditional plan -- Efficiency of the encodings -- Efficient WMI Computation -- The Procedure WMI-AllSMT -- The Procedure WMI-PA -- WMI-PA vs. WMI-AllSMT -- Experiments -- Synthetic Setting -- Strategic Road Network with Fixed Path -- Strategic Road Network with Conditional Plans -- Discussion -- Final remarks
|
505 |
8 |
|
|a MP-MI -- Preliminaries -- Computing MI -- Hybrid inference via MI -- On the inherent hardness of MI -- MP-MI: exact MI inference via message passing -- Propagation scheme -- Amortizing Queries -- Complexity of MP-MI -- Experiments -- Final remarks -- lariat -- Learning WMI distributions -- Learning the support -- Learning the weight function -- Normalization -- Experiments -- Final remarks -- Conclusion
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a Machine learning.
|
650 |
|
6 |
|a Apprentissage automatique.
|
650 |
|
7 |
|a Machine learning
|2 fast
|
830 |
|
0 |
|a Frontiers in artificial intelligence and applications ;
|v v. 350.
|
856 |
4 |
0 |
|u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=3283624
|z Texto completo
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL29238892
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 3283624
|
994 |
|
|
|a 92
|b IZTAP
|