Systematic Architectural Design for Optimal Wind Energy Generation
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Sharjah :
Bentham Science Publishers,
2021.
|
Colección: | Frontiers in Civil Engineering.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover
- Title
- Copyright
- End User License Agreement
- Contents
- Preface
- CONSENT FOR PUBLICATION
- CONFLICT OF INTEREST
- ACKNOWLEDGEMENTS
- REFERENCES
- Wind and Architecture
- 1. INTRODUCTION
- 2. EXAMPLES OF FULLY DEVELOPED ARCHITECTURAL DESIGNS FOR WIND ENERGY HARVESTING
- 2.1. Bahrain World Trade Center
- 2.2. Strata SE1
- 2.3. Pearl River Tower
- 3. WIND AND ARCHITECTURAL SAFETY
- 3.1. Wind-induced Vibration in Buildings-Definition and Cause
- 3.2. Wind-induced Vibration in Buildings-Remedies and Measures
- 3.3. Performance Criteria for Tall Buildings under Wind Design
- 3.3.1. Human Comfort
- 4. BUILDING'S AERODYNAMIC PERFORMANCE
- CONCLUSION
- REFERENCES
- Aerodynamic Architectural Design
- 1. INTRODUCTION
- 2. REASONS FOR AERODYNAMIC ARCHITECTURAL DESIGN
- 2.1. Ventilation
- 2.1.1. Natural Wind Pressure
- 2.1.2. Displacement or Stack Ventilation
- 2.1.3. Bernoulli Effect
- 2.1.4. Venturi Tube
- 2.1.5. Types of Wind Flows: Laminar, Separated, Turbulent or Eddy Flows
- 2.1.6. Air Inertia
- 2.1.7. No Vacuum in the Atmosphere
- 3. WIND ENERGY HARVESTING
- 3.1. Building Design Optimisation for Potential Wind Energy Collection
- 3.1.1. Overview
- 3.2. Aerodynamic Aerofoils for Wind Energy Generation
- CONCLUSION
- REFERENCES
- Wind as an On-site Energy Source
- 1. INTRODUCTION
- 2. WIND ENERGY AVAILABILITY
- 3. WIND AVAILABILITY WITH HEIGHT
- 4. VARIABILITY
- 5. CAPACITY FACTOR
- CONCLUSION
- REFERENCES
- Architectural Aerofoil Form Optimisation for Wind Energy Generation
- 1. INTRODUCTION
- 2. ANALYSIS OF WIND TURBINE INTEGRATION INTO BUILDING DESIGN
- 2.1. Assumptions
- 2.2. Wind Turbine Integration
- 2.3. Optimising Aerofoil Proximity to Roof Surface
- 2.4. Underlying Simulation Strategies
- 2.5. Computational Fluid Dynamics
- 2.5.1. Effect of Domain Size
- 2.5.1. Mesh-independent Solution
- 2.5.3. Grid Convergence Study
- 2.6. The Effect of Models of Turbulence
- 2.7. The Effect of the Aerofoil Position on Top of the Roof
- 2.8. The Effect of Different Wind Directions
- 2.9. Summary of Optimising the Aerofoil Proximity to the Roof of the House
- 2.10. Summary of Optimisation of the Aerofoil Front Shape
- 2.11. Effect of Increasing the Angle of Attack
- 3. POWER ESTIMATION
- 3.1. Effect of Aerofoil Angle of Attack and Aerofoil Proximity on the Power Output
- CONCLUSION
- REFERENCES
- Building-Integrated Wind Turbines
- 1. INTRODUCTION
- 2. NOISE REDUCTION OR PREVENTION
- 3. WIND-INDUCED VIBRATIONS IN WIND TURBINES
- 4. INCREASING WIND VELOCITY FOR WIND TURBINES
- 4.1. Diffuser Design Evolution
- 4.2. Technical Background
- 4.3. Velocity and Pressure of the Diffuser
- 4.4. Classifications of Ducted Wind Turbines
- 4.4.1. Simple Diffusers
- 4.4.2. Multi-slot Diffuser
- 4.4.3. Brim or Flange Diffuser
- 4.4.4. Vorticity-based Diffuser/Turbine