Cargando…

Systematic Architectural Design for Optimal Wind Energy Generation

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Elbakheit, Abdel Rahman
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Sharjah : Bentham Science Publishers, 2021.
Colección:Frontiers in Civil Engineering.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Cover
  • Title
  • Copyright
  • End User License Agreement
  • Contents
  • Preface
  • CONSENT FOR PUBLICATION
  • CONFLICT OF INTEREST
  • ACKNOWLEDGEMENTS
  • REFERENCES
  • Wind and Architecture
  • 1. INTRODUCTION
  • 2. EXAMPLES OF FULLY DEVELOPED ARCHITECTURAL DESIGNS FOR WIND ENERGY HARVESTING
  • 2.1. Bahrain World Trade Center
  • 2.2. Strata SE1
  • 2.3. Pearl River Tower
  • 3. WIND AND ARCHITECTURAL SAFETY
  • 3.1. Wind-induced Vibration in Buildings-Definition and Cause
  • 3.2. Wind-induced Vibration in Buildings-Remedies and Measures
  • 3.3. Performance Criteria for Tall Buildings under Wind Design
  • 3.3.1. Human Comfort
  • 4. BUILDING'S AERODYNAMIC PERFORMANCE
  • CONCLUSION
  • REFERENCES
  • Aerodynamic Architectural Design
  • 1. INTRODUCTION
  • 2. REASONS FOR AERODYNAMIC ARCHITECTURAL DESIGN
  • 2.1. Ventilation
  • 2.1.1. Natural Wind Pressure
  • 2.1.2. Displacement or Stack Ventilation
  • 2.1.3. Bernoulli Effect
  • 2.1.4. Venturi Tube
  • 2.1.5. Types of Wind Flows: Laminar, Separated, Turbulent or Eddy Flows
  • 2.1.6. Air Inertia
  • 2.1.7. No Vacuum in the Atmosphere
  • 3. WIND ENERGY HARVESTING
  • 3.1. Building Design Optimisation for Potential Wind Energy Collection
  • 3.1.1. Overview
  • 3.2. Aerodynamic Aerofoils for Wind Energy Generation
  • CONCLUSION
  • REFERENCES
  • Wind as an On-site Energy Source
  • 1. INTRODUCTION
  • 2. WIND ENERGY AVAILABILITY
  • 3. WIND AVAILABILITY WITH HEIGHT
  • 4. VARIABILITY
  • 5. CAPACITY FACTOR
  • CONCLUSION
  • REFERENCES
  • Architectural Aerofoil Form Optimisation for Wind Energy Generation
  • 1. INTRODUCTION
  • 2. ANALYSIS OF WIND TURBINE INTEGRATION INTO BUILDING DESIGN
  • 2.1. Assumptions
  • 2.2. Wind Turbine Integration
  • 2.3. Optimising Aerofoil Proximity to Roof Surface
  • 2.4. Underlying Simulation Strategies
  • 2.5. Computational Fluid Dynamics
  • 2.5.1. Effect of Domain Size
  • 2.5.1. Mesh-independent Solution
  • 2.5.3. Grid Convergence Study
  • 2.6. The Effect of Models of Turbulence
  • 2.7. The Effect of the Aerofoil Position on Top of the Roof
  • 2.8. The Effect of Different Wind Directions
  • 2.9. Summary of Optimising the Aerofoil Proximity to the Roof of the House
  • 2.10. Summary of Optimisation of the Aerofoil Front Shape
  • 2.11. Effect of Increasing the Angle of Attack
  • 3. POWER ESTIMATION
  • 3.1. Effect of Aerofoil Angle of Attack and Aerofoil Proximity on the Power Output
  • CONCLUSION
  • REFERENCES
  • Building-Integrated Wind Turbines
  • 1. INTRODUCTION
  • 2. NOISE REDUCTION OR PREVENTION
  • 3. WIND-INDUCED VIBRATIONS IN WIND TURBINES
  • 4. INCREASING WIND VELOCITY FOR WIND TURBINES
  • 4.1. Diffuser Design Evolution
  • 4.2. Technical Background
  • 4.3. Velocity and Pressure of the Diffuser
  • 4.4. Classifications of Ducted Wind Turbines
  • 4.4.1. Simple Diffusers
  • 4.4.2. Multi-slot Diffuser
  • 4.4.3. Brim or Flange Diffuser
  • 4.4.4. Vorticity-based Diffuser/Turbine