Understanding heat conduction /
"The first chapter of this book proposes an analytical Fourier series solution to the equation for heat transfer by conduction in a spherical shell with an internal stone consisting of insulating material as a model for the kinetic of temperature in stone fruits both as a general solution and a...
| Clasificación: | Libro Electrónico | 
|---|---|
| Otros Autores: | |
| Formato: | Electrónico eBook | 
| Idioma: | Inglés | 
| Publicado: | 
      New York :
        
      Nova Science Publishers,    
    
      [2021]
     | 
| Colección: | Physics Research and Technology Ser.
             | 
| Temas: | |
| Acceso en línea: | Texto completo | 
                Tabla de Contenidos: 
            
                  - Intro
 - Contents
 - Preface
 - Chapter 1
 - Cooling Kinetics in Stone Fruits
 - Abstract
 - General Introduction: Some Concepts in Heat Transfer
 - Estimations and Applications
 - Cooling/Heating Times
 - Example I (from Reference [5])
 - Solution
 - Modelling Thermal kinetics in stone fruits
 - Mathematical Background
 - Estimations and Applications
 - Cooling/Heating Times
 - Thermal Flow
 - Indirect Measurement of Thermal Diffusivity and Surface Heat Transfer Coefficient
 - Example II (from Reference [13])
 - Experiment Description
 - Equivalent Sphere
 - Determination of Biot Number and Thermal Diffusivity
 - Asymptotic Aproximation to Dimensionless Slope ,, -1.-2.
 - Maximum Values of ,
 - .
 - Example III. Prediction of Cooling Times in Example II
 - Modelling Thermal Kinetics Considering Internal Linearly Temperature Dependent Heat Generation
 - Mathematical Background
 - General Solution for Simple Geometries
 - Average Value
 - Estimations and Applications
 - Cooling/Heating Times
 - Displacement Correction
 - Summary of the Procedure
 - Example IV (from Reference [48])
 - Maximum Value at the Core
 - Threshold Biot Number
 - Estimation to ,
 - ., ,
 - . and ,
 - ℎ.
 - Modelling Thermal Kinetics in Stone Fruits Considering Heat of Respiration Linearly Reliant on Temperature
 - Mathematical Background
 - Maximum Value at the Core
 - Threshold Biot Number
 - Estimations and Applications
 - Cooling/Heating Times
 - Displacement Correction
 - Other Indirect Determinations
 - Heat Transfer Coefficient
 - Heat Generation Constants
 - Indirect Measurement of Thermal Diffusivity and Surface Heat Transfer Coefficient
 - Example V
 - References
 - Chapter 2
 - Sensitivity of Numerical Modeling Technique for Conjugate Heat Transfer Involving High Speed Compressible Flow over a Cylinder
 - Abstract
 - Introduction
 - Methods
 - System Investigated
 - Governing Equations
 - Material Properties
 - Modeling Method Studies
 - Model Validation
 - Results
 - Modeling Method Variations
 - Case A: Time Discretization Method
 - Case B: Timestep
 - Case C: Upwinding
 - Case D: Gradient Calculations
 - Case E: Gradient Limiter
 - Case F: Compressibility Effects with Model
 - Case G: Standard
 - Turbulence Model
 - Case H: Non-Equilibrium Wall Treatment Turbulence Model.
 - Case I: Enhanced Wall Treatment
 - Turbulence Model
 - Moving Cylinder Modeling Method
 - Velocity = 250 m/s
 - Velocity = 500 m/s
 - Velocity = 1000 m/s
 - Conclusion
 - References
 - Chapter 3
 - Advances in Heat Conduction Analysis with Fundamental Solution Based Finite Element Methods
 - Abstract
 - Introduction
 - Basic Formulation of FS-FEM
 - Basic Equation of Heat Conduction
 - Basic Formulation of FS-FEM
 - Nonconforming Intra-Element Field
 - Auxiliary Conforming Frame Field
 - Modified Variational Principle
 


