Understanding heat conduction /
"The first chapter of this book proposes an analytical Fourier series solution to the equation for heat transfer by conduction in a spherical shell with an internal stone consisting of insulating material as a model for the kinetic of temperature in stone fruits both as a general solution and a...
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
New York :
Nova Science Publishers,
[2021]
|
Colección: | Physics Research and Technology Ser.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Intro
- Contents
- Preface
- Chapter 1
- Cooling Kinetics in Stone Fruits
- Abstract
- General Introduction: Some Concepts in Heat Transfer
- Estimations and Applications
- Cooling/Heating Times
- Example I (from Reference [5])
- Solution
- Modelling Thermal kinetics in stone fruits
- Mathematical Background
- Estimations and Applications
- Cooling/Heating Times
- Thermal Flow
- Indirect Measurement of Thermal Diffusivity and Surface Heat Transfer Coefficient
- Example II (from Reference [13])
- Experiment Description
- Equivalent Sphere
- Determination of Biot Number and Thermal Diffusivity
- Asymptotic Aproximation to Dimensionless Slope ,, -1.-2.
- Maximum Values of ,
- .
- Example III. Prediction of Cooling Times in Example II
- Modelling Thermal Kinetics Considering Internal Linearly Temperature Dependent Heat Generation
- Mathematical Background
- General Solution for Simple Geometries
- Average Value
- Estimations and Applications
- Cooling/Heating Times
- Displacement Correction
- Summary of the Procedure
- Example IV (from Reference [48])
- Maximum Value at the Core
- Threshold Biot Number
- Estimation to ,
- ., ,
- . and ,
- ℎ.
- Modelling Thermal Kinetics in Stone Fruits Considering Heat of Respiration Linearly Reliant on Temperature
- Mathematical Background
- Maximum Value at the Core
- Threshold Biot Number
- Estimations and Applications
- Cooling/Heating Times
- Displacement Correction
- Other Indirect Determinations
- Heat Transfer Coefficient
- Heat Generation Constants
- Indirect Measurement of Thermal Diffusivity and Surface Heat Transfer Coefficient
- Example V
- References
- Chapter 2
- Sensitivity of Numerical Modeling Technique for Conjugate Heat Transfer Involving High Speed Compressible Flow over a Cylinder
- Abstract
- Introduction
- Methods
- System Investigated
- Governing Equations
- Material Properties
- Modeling Method Studies
- Model Validation
- Results
- Modeling Method Variations
- Case A: Time Discretization Method
- Case B: Timestep
- Case C: Upwinding
- Case D: Gradient Calculations
- Case E: Gradient Limiter
- Case F: Compressibility Effects with Model
- Case G: Standard
- Turbulence Model
- Case H: Non-Equilibrium Wall Treatment Turbulence Model.
- Case I: Enhanced Wall Treatment
- Turbulence Model
- Moving Cylinder Modeling Method
- Velocity = 250 m/s
- Velocity = 500 m/s
- Velocity = 1000 m/s
- Conclusion
- References
- Chapter 3
- Advances in Heat Conduction Analysis with Fundamental Solution Based Finite Element Methods
- Abstract
- Introduction
- Basic Formulation of FS-FEM
- Basic Equation of Heat Conduction
- Basic Formulation of FS-FEM
- Nonconforming Intra-Element Field
- Auxiliary Conforming Frame Field
- Modified Variational Principle