Cargando…

Understanding heat conduction /

"The first chapter of this book proposes an analytical Fourier series solution to the equation for heat transfer by conduction in a spherical shell with an internal stone consisting of insulating material as a model for the kinetic of temperature in stone fruits both as a general solution and a...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Kelley, William [Editor of Nova Science Publishers] (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York : Nova Science Publishers, [2021]
Colección:Physics Research and Technology Ser.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Intro
  • Contents
  • Preface
  • Chapter 1
  • Cooling Kinetics in Stone Fruits
  • Abstract
  • General Introduction: Some Concepts in Heat Transfer
  • Estimations and Applications
  • Cooling/Heating Times
  • Example I (from Reference [5])
  • Solution
  • Modelling Thermal kinetics in stone fruits
  • Mathematical Background
  • Estimations and Applications
  • Cooling/Heating Times
  • Thermal Flow
  • Indirect Measurement of Thermal Diffusivity and Surface Heat Transfer Coefficient
  • Example II (from Reference [13])
  • Experiment Description
  • Equivalent Sphere
  • Determination of Biot Number and Thermal Diffusivity
  • Asymptotic Aproximation to Dimensionless Slope ,, -1.-2.
  • Maximum Values of ,
  • .
  • Example III. Prediction of Cooling Times in Example II
  • Modelling Thermal Kinetics Considering Internal Linearly Temperature Dependent Heat Generation
  • Mathematical Background
  • General Solution for Simple Geometries
  • Average Value
  • Estimations and Applications
  • Cooling/Heating Times
  • Displacement Correction
  • Summary of the Procedure
  • Example IV (from Reference [48])
  • Maximum Value at the Core
  • Threshold Biot Number
  • Estimation to ,
  • ., ,
  • . and ,
  • ℎ.
  • Modelling Thermal Kinetics in Stone Fruits Considering Heat of Respiration Linearly Reliant on Temperature
  • Mathematical Background
  • Maximum Value at the Core
  • Threshold Biot Number
  • Estimations and Applications
  • Cooling/Heating Times
  • Displacement Correction
  • Other Indirect Determinations
  • Heat Transfer Coefficient
  • Heat Generation Constants
  • Indirect Measurement of Thermal Diffusivity and Surface Heat Transfer Coefficient
  • Example V
  • References
  • Chapter 2
  • Sensitivity of Numerical Modeling Technique for Conjugate Heat Transfer Involving High Speed Compressible Flow over a Cylinder
  • Abstract
  • Introduction
  • Methods
  • System Investigated
  • Governing Equations
  • Material Properties
  • Modeling Method Studies
  • Model Validation
  • Results
  • Modeling Method Variations
  • Case A: Time Discretization Method
  • Case B: Timestep
  • Case C: Upwinding
  • Case D: Gradient Calculations
  • Case E: Gradient Limiter
  • Case F: Compressibility Effects with Model
  • Case G: Standard
  • Turbulence Model
  • Case H: Non-Equilibrium Wall Treatment Turbulence Model.
  • Case I: Enhanced Wall Treatment
  • Turbulence Model
  • Moving Cylinder Modeling Method
  • Velocity = 250 m/s
  • Velocity = 500 m/s
  • Velocity = 1000 m/s
  • Conclusion
  • References
  • Chapter 3
  • Advances in Heat Conduction Analysis with Fundamental Solution Based Finite Element Methods
  • Abstract
  • Introduction
  • Basic Formulation of FS-FEM
  • Basic Equation of Heat Conduction
  • Basic Formulation of FS-FEM
  • Nonconforming Intra-Element Field
  • Auxiliary Conforming Frame Field
  • Modified Variational Principle