Semantic and Interactive Content-based Image Retrieval
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Göttingen :
Cuvillier Verlag,
2020.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Intro
- 1 Introduction
- 1.1 Content-based image retrieval
- 1.2 Instance vs. category retrieval
- 1.3 Challenges
- 1.4 Interactive image retrieval
- 1.5 Semantic image retrieval
- 1.6 Contributions of this thesis
- 2 Methodical Background
- 2.1 Fundamental concepts and definitions
- 2.2 Classification
- 2.2.1 Problem setting
- 2.2.2 Support vector machines
- 2.2.3 Linear discriminant analysis
- 2.2.4 Nearest neighbor classification
- 2.2.5 Gaussian processes
- 2.2.6 Neural networks
- 2.2.7 Active learning
- 2.3 Clustering
- 2.3.1 k-means
- 2.3.2 GaussianMixtureModels
- 2.4 Metric Learning
- 2.4.2 Duality between metric and feature learning
- 2.4.3 Learning metrics for fixed features
- 2.4.4 Deep metric learning
- 2.5 Information retrieval
- 2.5.1 Problem description
- 2.5.2 Evaluation metrics
- 2.5.3 Learning to rank
- 2.5.4 System architecture
- 2.5.5 Spatial verification and re-ranking
- 2.5.6 Query expansion and diffusion
- 2.5.7 Cross- and multi-modal retrieval
- 2.6 Image representations for CBIR
- 2.6.1 Hand-crafted local features
- 2.6.2 Hand-crafted transformationsand aggregations
- 2.6.3 Principal components analysis and whitening
- 2.6.4 Off-the-shelf CNN features
- 2.6.5 End-to-end learning for image retrieval
- 2.7 Relevance feedback
- 3 The Cosine Loss:A RetrievalMetricused for Classification
- 3.1 Introduction and motivation
- 3.1.1 The problem of small data
- 3.1.2 Weakly supervised localization
- 3.2 Related work
- 3.2.2 Learning from small data
- 3.2.3 Weakly supervised localization
- 3.3 The cosine loss
- 3.3.1 Objective and notation
- 3.3.2 Comparison with other loss functions
- 3.4 Dense classification andscene understanding
- 4 Hierarchy-based SemanticImage Embeddings
- 4.1 In the need of prior knowledge
- 4.1.1 Semantic image retrieval
- 4.1.2 Explaining classification decisions
- 4.2 Related work
- 4.3 Knowledge in trees: class taxonomies
- 4.3.1 Hierarchy-based semantic similarity
- 4.3.2 Tree-shaped taxonomies
- 4.4 Hierarchy-based semantic embeddings
- 4.4.1 Exact solution
- 4.4.2 Low-dimensional approximation
- 4.5 Learning semantic image embeddings
- 4.6 Subsequent works onsemantic embeddings
- 5 Experiments forCosine Loss and Semantic Embeddings
- 5.1 Datasets
- 5.1.1 Visual classification datasets
- 5.1.2 FGVC datasets
- 5.1.3 ExtremeWeather dataset
- 5.1.4 AG News dataset
- 5.1.5 MS COCO
- 5.2 Training details
- 5.3 Semantic image retrieval
- 5.3.1 Performance metrics
- 5.3.2 Competitors
- 5.3.3 Semantic image retrieval performance
- 5.3.4 Low-dimensional approximation
- 5.4 Learning from small data
- 5.4.1 Classification performance
- 5.4.2 Effect of semantic information
- 5.4.3 Effect of dataset size
- 5.5 Learned feature space
- 5.6 Dense classification
- 5.6.1 Weakly supervised localization
- 5.6.2 Explaining classifier decisions
- 6 Interactive Image Retrieval
- 6.1 Introduction