Cargando…

A first course in control system design /

Annotation

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Iqbal, Kamran
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Gistrup : River Publishers, [2017]
Colección:River Publishers series in automation, control and robotics.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Preface xi
  • Acknowledgement xvii
  • List of Figures xix
  • List of Table xxiii
  • List of Abbreviations xxv
  • 1 Physical System Models 1
  • 1.1 Physical Component Models 2
  • 1.1.1 First-Order Models 2
  • 1.1.2 Second-Order Models 6
  • 1.2 Transfer Function Models 7
  • 1.2.1 DC Motor Model 8
  • 1.2.2 Simplified Model a DC Motor 10
  • 1.2.3 Industrial Process Models 10
  • 1.3 State Variable Models 11
  • 1.4 Linearization of Nonlinear Models 13
  • 1.4.1 The General Nonlinear Case 14 Skill Assessment Questions 15
  • 2 Analysis of Transfer Function Models 17
  • 2.1 System Poles and Zeros 17
  • 2.2 System Step Response 18
  • 2.2.1 Transient and Steady-State Components 19
  • 2.3 System Impulse Response 19
  • 2.4 BIBO Stability 20
  • 2.5 Sinusoidal Response of the System 21
  • 2.5.1 The Frequency Response Function 22 Skill Assessment Questions 23
  • 3 Analysis of State Variable Models 25
  • 3.1 System Transfer Function 25
  • 3.2 Solution to the State Equations 26
  • 3.3 The State-Transition Matrix 27
  • 3.4 Linear Transformation of the State Variables 29
  • 3.5 State-Space Realization of Transfer Function Models 31
  • 3.5.1 Controller Form Realization 31
  • 3.5.2 Modal Form Realization 33
  • 3.5.3 Diagonal Form Realization 34 Skill Assessment Questions 35
  • 4 Control System Design Objectives 37
  • 4.1 Stability of the Closed-Loop System 38
  • 4.1.1 The Hurwitz Criterion 38
  • 4.1.2 The Routh's Criterion 39
  • 4.2 System Transient Response 40
  • 4.2.1 Modes of System Response 40
  • 4.2.2 System Design Specifications 41
  • 4.2.3 Performance Indices 42
  • 4.3 System Steady-State Response 43
  • 4.3.1 Error Constants 44
  • 4.3.2 Steady-State Error to Ramp Input 44
  • 4.4 Disturbance Rejection 45
  • 4.5 Robustness 46 Skill Assessment Questions 48
  • 5 Cascade Controller Models 49
  • 5.1 The Static Controller 49
  • 5.2 The Dynamic Controller 50
  • 5.3 The PID Controller 51
  • 5.3.1 Proportional-Derivative (PD) 51
  • 5.3.2 Proportional-Integral (PI) 52
  • 5.3.3 Proportional-Integral-Derivative (PID) 52.
  • 5.3.4 PID Controller Tuning 53 Skill Assessment Questions 55
  • 6 Control System Design with Root Locus 57
  • 6.1 The Root Locus 58
  • 6.1.1 Root Locus Rules 59
  • 6.2 Static Controller Design 61
  • 6.3 Controller Design Specifications 63
  • 6.4 Dynamic Controller Design 64
  • 6.4.1 Transient Response Improvement 64
  • 6.4.2 Steady-State Error Improvement 67
  • 6.4.3 Lead-Lag and PID Designs 69
  • 6.4.4 Rate Feedback Compensation 71
  • 6.4.5 Controller Design Comparison 74
  • 6.4.6 Controller Design with MATLAB SISO Tool 75
  • 6.5 Controller Realization 75
  • 6.5.1 Phase-Lead/Phase-Lag Compensators 76
  • 6.5.2 PD, PI, PID Compensators 76 Skill Assessment Questions 77
  • 7 Sampled-Data Systems 79
  • 7.1 Models of Sampled-Data Systems 80
  • 7.1.1 Zero-Order Hold 82
  • 7.2 The Pulse Transfer Function 82
  • 7.2.1 Pulse Transfer Function in MATLAB 83
  • 7.3 Closed-Loop Sampled-Data Systems 84
  • 7.3.1 Step Response 84
  • 7.3.2 Steady-State Error 87
  • 7.4 Stability of Sampled-Data Systems 88
  • 7.4.1 Unit Pulse Response 88
  • 7.4.2 Schur-Cohn Stability Test 89
  • 7.4.3 The Jury's Test 90
  • 7.4.4 Stability through Bilinear Transform 91 Skill Assessment Questions 93
  • 8 Digital Controller Design 95
  • 8.1 Controller Emulation 95
  • 8.1.1 Controller Emulation Using Impulse Invariance 96
  • 8.1.2 Controller Emulation Using Pole-Zero Matching 96
  • 8.1.3 Controller Emulation Using Bilinear Transform 97
  • 8.1.4 Controller Emulation Using ZOH 98
  • 8.1.5 Comparison of Controller Emulation Methods 98
  • 8.2 Emulation of Analog PID Controller 100
  • 8.3 Root Locus Design of Digital Controllers 102
  • 8.3.1 Design for a Desired Damping Ratio 102
  • 8.3.2 Settling Time and Damping Ratio 104 Skill Assessment Questions 105
  • 9 Control System Design in State-Space 107
  • 9.1 Pole Placement with Full State Feedback 108
  • 9.1.1 Pole Placement in MATLAB 109
  • 9.2 Controller Form Pole Placement Design 109
  • 9.2.1 Linear Transformation to the Controller Form 111
  • 9.3 Tracking System Design 113.
  • 9.3.1 Tracking PI Control 113 Skill Assessment Questions 118
  • 10 Digital Controller Design in State-Space 121
  • 10.1 Sampled-Data Systems in State-Space 121
  • 10.2 Solution to the Discrete State Equations 123
  • 10.3 Pulse Transfer Function from the State Equations 125
  • 10.4 Digital Controller Design via Pole Placement 125
  • 10.4.1 Deadbeat Controller Design 127 Skill Assessment Questions 129
  • 11 Compensator Design via Frequency Response Modification 131
  • 11.1 The Bode Plot 132
  • 11.1.1 Bode Plot of First Order Factors 132
  • 11.1.2 Bode Plot of Second Order Factors 133
  • 11.1.3 The Composite Bode Plot 134
  • 11.2 The Polar Plot 135
  • 11.3 Relative Stability 137
  • 11.3.1 Relative Stability on Frequency Response Plots 137
  • 11.3.2 Phase Margin and the Transient Response 138
  • 11.3.3 Sensitivity 139
  • 11.4 Frequency Response Design 139
  • 11.4.1 Gain Compensation 140
  • 11.4.2 Phase-Lag Compensation 141
  • 11.4.3 Phase-Lead Compensation 143
  • 11.4.4 Lead-Lag Compensation 145
  • 11.4.5 PI Compensator 147
  • 11.4.6 PD Compensator 148
  • 11.4.7 PID Compensator 148
  • 11.5 Closed-Loop Frequency Response 150
  • 11.5.1 The Nichol's Chart 150 Skill Assessment Questions 152 Appendix 153
  • References 157
  • Index 159
  • About the Author 163.