A first course in control system design /
Annotation
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Gistrup :
River Publishers,
[2017]
|
Colección: | River Publishers series in automation, control and robotics.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Preface xi
- Acknowledgement xvii
- List of Figures xix
- List of Table xxiii
- List of Abbreviations xxv
- 1 Physical System Models 1
- 1.1 Physical Component Models 2
- 1.1.1 First-Order Models 2
- 1.1.2 Second-Order Models 6
- 1.2 Transfer Function Models 7
- 1.2.1 DC Motor Model 8
- 1.2.2 Simplified Model a DC Motor 10
- 1.2.3 Industrial Process Models 10
- 1.3 State Variable Models 11
- 1.4 Linearization of Nonlinear Models 13
- 1.4.1 The General Nonlinear Case 14 Skill Assessment Questions 15
- 2 Analysis of Transfer Function Models 17
- 2.1 System Poles and Zeros 17
- 2.2 System Step Response 18
- 2.2.1 Transient and Steady-State Components 19
- 2.3 System Impulse Response 19
- 2.4 BIBO Stability 20
- 2.5 Sinusoidal Response of the System 21
- 2.5.1 The Frequency Response Function 22 Skill Assessment Questions 23
- 3 Analysis of State Variable Models 25
- 3.1 System Transfer Function 25
- 3.2 Solution to the State Equations 26
- 3.3 The State-Transition Matrix 27
- 3.4 Linear Transformation of the State Variables 29
- 3.5 State-Space Realization of Transfer Function Models 31
- 3.5.1 Controller Form Realization 31
- 3.5.2 Modal Form Realization 33
- 3.5.3 Diagonal Form Realization 34 Skill Assessment Questions 35
- 4 Control System Design Objectives 37
- 4.1 Stability of the Closed-Loop System 38
- 4.1.1 The Hurwitz Criterion 38
- 4.1.2 The Routh's Criterion 39
- 4.2 System Transient Response 40
- 4.2.1 Modes of System Response 40
- 4.2.2 System Design Specifications 41
- 4.2.3 Performance Indices 42
- 4.3 System Steady-State Response 43
- 4.3.1 Error Constants 44
- 4.3.2 Steady-State Error to Ramp Input 44
- 4.4 Disturbance Rejection 45
- 4.5 Robustness 46 Skill Assessment Questions 48
- 5 Cascade Controller Models 49
- 5.1 The Static Controller 49
- 5.2 The Dynamic Controller 50
- 5.3 The PID Controller 51
- 5.3.1 Proportional-Derivative (PD) 51
- 5.3.2 Proportional-Integral (PI) 52
- 5.3.3 Proportional-Integral-Derivative (PID) 52.
- 5.3.4 PID Controller Tuning 53 Skill Assessment Questions 55
- 6 Control System Design with Root Locus 57
- 6.1 The Root Locus 58
- 6.1.1 Root Locus Rules 59
- 6.2 Static Controller Design 61
- 6.3 Controller Design Specifications 63
- 6.4 Dynamic Controller Design 64
- 6.4.1 Transient Response Improvement 64
- 6.4.2 Steady-State Error Improvement 67
- 6.4.3 Lead-Lag and PID Designs 69
- 6.4.4 Rate Feedback Compensation 71
- 6.4.5 Controller Design Comparison 74
- 6.4.6 Controller Design with MATLAB SISO Tool 75
- 6.5 Controller Realization 75
- 6.5.1 Phase-Lead/Phase-Lag Compensators 76
- 6.5.2 PD, PI, PID Compensators 76 Skill Assessment Questions 77
- 7 Sampled-Data Systems 79
- 7.1 Models of Sampled-Data Systems 80
- 7.1.1 Zero-Order Hold 82
- 7.2 The Pulse Transfer Function 82
- 7.2.1 Pulse Transfer Function in MATLAB 83
- 7.3 Closed-Loop Sampled-Data Systems 84
- 7.3.1 Step Response 84
- 7.3.2 Steady-State Error 87
- 7.4 Stability of Sampled-Data Systems 88
- 7.4.1 Unit Pulse Response 88
- 7.4.2 Schur-Cohn Stability Test 89
- 7.4.3 The Jury's Test 90
- 7.4.4 Stability through Bilinear Transform 91 Skill Assessment Questions 93
- 8 Digital Controller Design 95
- 8.1 Controller Emulation 95
- 8.1.1 Controller Emulation Using Impulse Invariance 96
- 8.1.2 Controller Emulation Using Pole-Zero Matching 96
- 8.1.3 Controller Emulation Using Bilinear Transform 97
- 8.1.4 Controller Emulation Using ZOH 98
- 8.1.5 Comparison of Controller Emulation Methods 98
- 8.2 Emulation of Analog PID Controller 100
- 8.3 Root Locus Design of Digital Controllers 102
- 8.3.1 Design for a Desired Damping Ratio 102
- 8.3.2 Settling Time and Damping Ratio 104 Skill Assessment Questions 105
- 9 Control System Design in State-Space 107
- 9.1 Pole Placement with Full State Feedback 108
- 9.1.1 Pole Placement in MATLAB 109
- 9.2 Controller Form Pole Placement Design 109
- 9.2.1 Linear Transformation to the Controller Form 111
- 9.3 Tracking System Design 113.
- 9.3.1 Tracking PI Control 113 Skill Assessment Questions 118
- 10 Digital Controller Design in State-Space 121
- 10.1 Sampled-Data Systems in State-Space 121
- 10.2 Solution to the Discrete State Equations 123
- 10.3 Pulse Transfer Function from the State Equations 125
- 10.4 Digital Controller Design via Pole Placement 125
- 10.4.1 Deadbeat Controller Design 127 Skill Assessment Questions 129
- 11 Compensator Design via Frequency Response Modification 131
- 11.1 The Bode Plot 132
- 11.1.1 Bode Plot of First Order Factors 132
- 11.1.2 Bode Plot of Second Order Factors 133
- 11.1.3 The Composite Bode Plot 134
- 11.2 The Polar Plot 135
- 11.3 Relative Stability 137
- 11.3.1 Relative Stability on Frequency Response Plots 137
- 11.3.2 Phase Margin and the Transient Response 138
- 11.3.3 Sensitivity 139
- 11.4 Frequency Response Design 139
- 11.4.1 Gain Compensation 140
- 11.4.2 Phase-Lag Compensation 141
- 11.4.3 Phase-Lead Compensation 143
- 11.4.4 Lead-Lag Compensation 145
- 11.4.5 PI Compensator 147
- 11.4.6 PD Compensator 148
- 11.4.7 PID Compensator 148
- 11.5 Closed-Loop Frequency Response 150
- 11.5.1 The Nichol's Chart 150 Skill Assessment Questions 152 Appendix 153
- References 157
- Index 159
- About the Author 163.