A Closer Look at Quartz Crystal Microbalances.
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
New York :
Novinka,
2020.
|
Colección: | Nanotechnology Science and Technology Ser.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Intro
- Contents
- Preface
- Chapter 1
- Principle and Application of Quartz Crystal Microbalance
- Abstract
- 1. Introduction
- 2. Characteristic of QCM
- 3. Theoretical Model of QCM
- 3.1. Mason Model
- 3.2. Kelvin-Voight Model
- 3.3. Solidified Liquid Layer (SLL) Model
- 4. Classification of QCM
- 4.1. QCM-FIA
- 4.2. QCM-D
- 4.3. QCM-A
- 4.4. EQCM
- 5. Application and Research Progress of EQCM
- 5.1. Electropolymerization
- 5.2. Electrodeposition and Dissolution
- 5.3. Electrochemical Corrosion and Protection
- 5.4. Electrochemical Adsorption and Desorption
- 5.5. Polymer Modified Electrode
- 5.6. Ion Transfer and Exchange Process
- 5.7. Energy Conversion and Storage
- 5.7.1. Fuel Cell
- 5.7.2. Lithium Battery
- 5.7.3. Capacitor
- 5.7.4. Solar Energy
- 5.8. Biomedicine
- 5.9. Gas Detection
- 5.10. Other Applications
- Outlook
- References
- Chapter 2
- Quartz Crystal Microbalance-Based Sensor Applications for Micropollutants
- Abstract
- 1. Introduction
- 2. Scope of Micropollutants
- 3. Biosensors for Detecting Micropollutants
- 3.1. Optical Biosensors
- 3.2. Electrochemical Biosensors
- 3.3. Thermal Biosensors
- 3.4. Piezoelectric Biosensors
- 4. QCM for Micropollutants
- 4.1. QCM for Heavy Metal Ions
- 4.2. QCM for Organic Micropollutants
- 4.2.1. QCM for Pesticides Detection
- 4.2.2. QCM for Antibiotic Detection
- 4.2.3. QCM for Antidepressant Detection
- 4.2.4. QCM for Personal Care Products Detection
- 4.2.5. Challenges and Future Prospects
- Conclusion
- References
- Chapter 3
- Mathematical Models of QCM.
- Pro-Sauerbrey and Viscoelastic Structures
- Abstract
- 1. Introduction
- 2. Theoretical Part
- 2.1. Derivation of the Sauerbrey Equation
- 2.2. Output of the Modified Sauerbrey Equation
- 2.3. Determination of Oscillator Oscillation Amplitude
- 2.3.1. Solution of the System of Ordinary Differential Equations without Taking into Account Friction Forces
- 2.3.2. Solution of the System of Ordinary Differential Equations Taking into Account Friction Forces
- 3. Example Applications of a Mathematical Model
- 3.1. One of the Possible Applications of the Presented Mathematical Models, Let's Consider an Example of Work [8]
- 3.1.1. Determination of the Natural Frequency of Oscillation of the Layer
- 3.1.2. Calculation
- 3.1.3. Calculation of Resonant Frequencies
- 3.1.4 Calculation of the Young's Modulus of the Layer Material
- 3.1.5. Calculation the Mass of the Layer
- 3.1.6. Construction of the Calculated Admittance Spectrum
- 3.1.7. Construction of the Calculated Phase Angle Spectrum
- 3.2. Another Example of the Application of the Presented Mathematical Model Will Be Given Using the Experimental Results of the Work [12]
- 3.2.1. Determination of the Multi-Layer Natural Frequency
- 3.2.2. Calculating and
- 3.2.3. Calculating the Multi-Layer Friction Coefficient