Cargando…

A Closer Look at Quartz Crystal Microbalances.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Mathiasen, Selam B. (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York : Novinka, 2020.
Colección:Nanotechnology Science and Technology Ser.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Intro
  • Contents
  • Preface
  • Chapter 1
  • Principle and Application of Quartz Crystal Microbalance
  • Abstract
  • 1. Introduction
  • 2. Characteristic of QCM
  • 3. Theoretical Model of QCM
  • 3.1. Mason Model
  • 3.2. Kelvin-Voight Model
  • 3.3. Solidified Liquid Layer (SLL) Model
  • 4. Classification of QCM
  • 4.1. QCM-FIA
  • 4.2. QCM-D
  • 4.3. QCM-A
  • 4.4. EQCM
  • 5. Application and Research Progress of EQCM
  • 5.1. Electropolymerization
  • 5.2. Electrodeposition and Dissolution
  • 5.3. Electrochemical Corrosion and Protection
  • 5.4. Electrochemical Adsorption and Desorption
  • 5.5. Polymer Modified Electrode
  • 5.6. Ion Transfer and Exchange Process
  • 5.7. Energy Conversion and Storage
  • 5.7.1. Fuel Cell
  • 5.7.2. Lithium Battery
  • 5.7.3. Capacitor
  • 5.7.4. Solar Energy
  • 5.8. Biomedicine
  • 5.9. Gas Detection
  • 5.10. Other Applications
  • Outlook
  • References
  • Chapter 2
  • Quartz Crystal Microbalance-Based Sensor Applications for Micropollutants
  • Abstract
  • 1. Introduction
  • 2. Scope of Micropollutants
  • 3. Biosensors for Detecting Micropollutants
  • 3.1. Optical Biosensors
  • 3.2. Electrochemical Biosensors
  • 3.3. Thermal Biosensors
  • 3.4. Piezoelectric Biosensors
  • 4. QCM for Micropollutants
  • 4.1. QCM for Heavy Metal Ions
  • 4.2. QCM for Organic Micropollutants
  • 4.2.1. QCM for Pesticides Detection
  • 4.2.2. QCM for Antibiotic Detection
  • 4.2.3. QCM for Antidepressant Detection
  • 4.2.4. QCM for Personal Care Products Detection
  • 4.2.5. Challenges and Future Prospects
  • Conclusion
  • References
  • Chapter 3
  • Mathematical Models of QCM.
  • Pro-Sauerbrey and Viscoelastic Structures
  • Abstract
  • 1. Introduction
  • 2. Theoretical Part
  • 2.1. Derivation of the Sauerbrey Equation
  • 2.2. Output of the Modified Sauerbrey Equation
  • 2.3. Determination of Oscillator Oscillation Amplitude
  • 2.3.1. Solution of the System of Ordinary Differential Equations without Taking into Account Friction Forces
  • 2.3.2. Solution of the System of Ordinary Differential Equations Taking into Account Friction Forces
  • 3. Example Applications of a Mathematical Model
  • 3.1. One of the Possible Applications of the Presented Mathematical Models, Let's Consider an Example of Work [8]
  • 3.1.1. Determination of the Natural Frequency of Oscillation of the Layer
  • 3.1.2. Calculation
  • 3.1.3. Calculation of Resonant Frequencies
  • 3.1.4 Calculation of the Young's Modulus of the Layer Material
  • 3.1.5. Calculation the Mass of the Layer
  • 3.1.6. Construction of the Calculated Admittance Spectrum
  • 3.1.7. Construction of the Calculated Phase Angle Spectrum
  • 3.2. Another Example of the Application of the Presented Mathematical Model Will Be Given Using the Experimental Results of the Work [12]
  • 3.2.1. Determination of the Multi-Layer Natural Frequency
  • 3.2.2. Calculating and
  • 3.2.3. Calculating the Multi-Layer Friction Coefficient