Efficient frequent subtree mining beyond forests /
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Amsterdam :
IOS Press,
2020.
|
Colección: | Frontiers in artificial intelligence and applications. Dissertations in artificial intelligence ;
348. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Intro
- Title Page
- Contents
- 1 Introduction
- 1.1 A Motivating Experiment
- 1.2 Contributions
- 1.3 Outline
- 1.4 Previously Published Work
- 2 Preliminaries
- 2.1 Notions and Notation
- 2.2 Frequent Connected Subgraph Mining
- 2.3 Embedding Computation
- 2.4 Datasets
- 3 Related Work
- 3.1 Algorithms for the SubgraphIsomorphism Problem
- 3.2 Algorithms for the FCSM Problem
- 4 Probabilistic Frequent Subtrees
- 4.1 Mining Probabilistic Frequent Subtrees
- 4.2 Experimental Evaluation
- 4.3 Summary
- 5 Boosted Probabilistic Frequent Subtrees
- 5.1 An Efficient Embedding Operator for Trees
- 5.2 Mining Boosted Probabilistic Frequent Subtrees
- 5.3 Exact Frequent Subtree Mining
- 5.4 Summary and Open Questions
- 6 Fast Computation
- 6.1 Complete Embeddings into Subtree Feature Spaces
- 6.2 Min-Hashing in Subtree Feature Spaces
- 6.3 Experimental Evaluation
- 6.4 Summary and Open Questions
- 7 Conclusion
- 7.1 Discussion
- 7.2 Outlook
- A HamiltonianPath for Cactus Graphs
- A.1 Three Necessary Conditions
- A.2 A Linear Time Algorithm for Cactus Graphs
- A.3 Some Statistics for Real-World Datasets
- A.4 Summary
- B Poissons Binomial Distribution
- Bibliography