|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
EBSCO_on1162846576 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr ||||||||||| |
008 |
200705s2020 ne o 000 0 eng d |
040 |
|
|
|a YDX
|b eng
|e pn
|c YDX
|d N$T
|d EBLCP
|d TEF
|d IOSPR
|d OCLCF
|d OCLCO
|d OCLCQ
|d K6U
|d OCLCQ
|d OCLCO
|
019 |
|
|
|a 1162815946
|
020 |
|
|
|a 9781643680798
|q (electronic bk.)
|
020 |
|
|
|a 164368079X
|q (electronic bk.)
|
020 |
|
|
|z 9781643680781
|
035 |
|
|
|a (OCoLC)1162846576
|z (OCoLC)1162815946
|
050 |
|
4 |
|a QA76.9.D343
|
082 |
0 |
4 |
|a 006.3/12
|2 23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Welke, Pascal.
|
245 |
1 |
0 |
|a Efficient frequent subtree mining beyond forests /
|c Pascal Welke.
|
260 |
|
|
|a Amsterdam :
|b IOS Press,
|c 2020.
|
300 |
|
|
|a 1 online resource
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Dissertations in artificial intelligence ;
|v 348
|
505 |
0 |
|
|a Intro -- Title Page -- Contents -- 1 Introduction -- 1.1 A Motivating Experiment -- 1.2 Contributions -- 1.3 Outline -- 1.4 Previously Published Work -- 2 Preliminaries -- 2.1 Notions and Notation -- 2.2 Frequent Connected Subgraph Mining -- 2.3 Embedding Computation -- 2.4 Datasets -- 3 Related Work -- 3.1 Algorithms for the SubgraphIsomorphism Problem -- 3.2 Algorithms for the FCSM Problem -- 4 Probabilistic Frequent Subtrees -- 4.1 Mining Probabilistic Frequent Subtrees -- 4.2 Experimental Evaluation -- 4.3 Summary -- 5 Boosted Probabilistic Frequent Subtrees
|
505 |
8 |
|
|a 5.1 An Efficient Embedding Operator for Trees -- 5.2 Mining Boosted Probabilistic Frequent Subtrees -- 5.3 Exact Frequent Subtree Mining -- 5.4 Summary and Open Questions -- 6 Fast Computation -- 6.1 Complete Embeddings into Subtree Feature Spaces -- 6.2 Min-Hashing in Subtree Feature Spaces -- 6.3 Experimental Evaluation -- 6.4 Summary and Open Questions -- 7 Conclusion -- 7.1 Discussion -- 7.2 Outlook -- A HamiltonianPath for Cactus Graphs -- A.1 Three Necessary Conditions -- A.2 A Linear Time Algorithm for Cactus Graphs -- A.3 Some Statistics for Real-World Datasets -- A.4 Summary
|
505 |
8 |
|
|a B Poissons Binomial Distribution -- Bibliography
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a Data mining.
|
650 |
|
2 |
|a Data Mining
|
650 |
|
6 |
|a Exploration de données (Informatique)
|
650 |
|
7 |
|a Data mining
|2 fast
|
830 |
|
0 |
|a Frontiers in artificial intelligence and applications.
|p Dissertations in artificial intelligence ;
|v 348.
|
856 |
4 |
0 |
|u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2512584
|z Texto completo
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL6240697
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 2512584
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 301357898
|
994 |
|
|
|a 92
|b IZTAP
|