|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
EBSCO_on1162572452 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr ||||||||||| |
008 |
100630s2010 nyu ob 001 0 eng |
010 |
|
|
|a 2020686454
|
040 |
|
|
|a DLC
|b eng
|e rda
|c DLC
|d VLY
|d N$T
|d YDXCP
|d E7B
|d OCLCF
|d NLGGC
|d EBLCP
|d VTS
|d AGLDB
|d AU@
|d STF
|d M8D
|d OCLCO
|d OCLCQ
|d OCLCO
|
019 |
|
|
|a 750638340
|a 1058333875
|
020 |
|
|
|a 9781621001478
|q ebook
|
020 |
|
|
|a 1621001474
|
020 |
|
|
|z 9781617286520
|q hardcover
|
020 |
|
|
|z 1617286524
|
029 |
1 |
|
|a AU@
|b 000051413024
|
029 |
1 |
|
|a AU@
|b 000062325294
|
029 |
1 |
|
|a DEBBG
|b BV043093903
|
029 |
1 |
|
|a DEBSZ
|b 421558075
|
035 |
|
|
|a (OCoLC)1162572452
|z (OCoLC)750638340
|z (OCoLC)1058333875
|
042 |
|
|
|a pcc
|
050 |
0 |
0 |
|a QD801
|
072 |
|
7 |
|a SCI
|x 013060
|2 bisacsh
|
072 |
|
7 |
|a TEC
|x 009010
|2 bisacsh
|
082 |
0 |
0 |
|a 660/.2842
|2 22
|
049 |
|
|
|a UAMI
|
245 |
0 |
0 |
|a Sonochemistry :
|b theory, reactions, syntheses, and applications /
|c Filip M. Nowak, editor.
|
264 |
|
1 |
|a New York :
|b Nova Science Publishers, Inc.,
|c [2010]
|
300 |
|
|
|a 1 online resource.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Chemical engineering methods and technology
|
504 |
|
|
|a Includes bibliographical references and index.
|
588 |
|
|
|a Description based on print version record.
|
546 |
|
|
|a English.
|
505 |
0 |
|
|a SONOCHEMISTRY: THEORY, REACTIONS, SYNTHESES, AND APPLICATIONS ; SONOCHEMISTRY: THEORY, REACTIONS, SYNTHESES, AND APPLICATIONS ; CONTENTS ; PREFACE ; SONOCHEMISTRY: A SUITABLE METHOD FOR SYNTHESIS OF NANO-STRUCTURED MATERIALS ; ABSTRACT ; 1. INTRODUCTION ; 2. SYNTHESIS OF NANOMETALS ; 2.1. Gold ; 2.2. Palladium ; 2.3. Tellurium ; 2.4. Tin ; 2.5. Ruthenium ; 2.6. Germanium ; 2.7. Selenium ; 2.8. Silver ; 3. SYNTHESIS OF METALLIC NANOALLOYS ; 3.1. Sn-Bi ; 3.2. Pd-Sn ; 3.3. Pt-Ru ; 3.4. Co-B ; 3.5. Au-Ag ; 3.6. Bimetallic Nanoparticles with Core-Shell Morphology ; 4. METAL OXIDE.
|
505 |
8 |
|
|a 4.1. ZnO 4.2. CuO ; 4.3. V2O5 ; 4.4. Iron oxide ; 4.5. Manganese Oxide ; 4.6. In2O3 ; 4.7. TiO2 ; 4.8. PbO2 ; 4.9. Other Metallic Oxide ; 4.10. Rare-Earth Oxide ; 5. THE SONOCHEMICAL SYNTHESIS OF MIXED OXIDES ; 5.1. MVO4 ; 5.2. MTiO3 ; 5.3. MAl2O4 ; 5.4. MWO4 ; 5.5. MoO4 ; 5.6. Ferrites ; 6. NANOCOMPOSITES ; 6.1. Metal Oxide-Metal (Oxide) Nanocomposite ; 6.2. Organic-Inorganic Nanocomposite ; 6.2.1. Natural Fibers ; 6.2.2. Polymeric Based Nanocomposites ; 6.2.2.1 Poly(Methylacrylate) and Poly(Methylmethacrylate) ; 6.2.2.2. Polystyrene ; 6.2.2.3. Polypropylene.
|
505 |
8 |
|
|a 6.2.2.4. Conducting Polymer 6.3. Carbonaceous Nanocomposite ; 6.4. Other Nanocomposite ; 7. NANOMATERIALS WITH CORE-SHELL MORPHOLOGY ; 7.1. Nanoparticle with Metal Core ; 7.2. Nanoparticles with Metal Oxide Core ; 7.3. Nanoparticle with Sio2 Core ; 7.4. Chalcogenide Core-Shell ; 8. OTHER NANOMATERIAL ; 8.1. Metal Phosphate ; 8.2. Metal Carbonate ; 8.3. Metal Fluoride ; 8.4. Single-Walled Carbon Nanotube (SWCNT) ; 8.5. Polyaniline ; 8.6. Metal Chalcogenides ; 8.6.1. Metal Sulfides ; 8.6.2. Metal Telluride ; 8.6.3. Metal Selenide ; 8.7. Coordination Polymers ; CONCLUSION.
|
505 |
8 |
|
|a ACKNOWLEDGMENTS REFERENCES ; INDUSTRIAL-SCALE PROCESSING OF LIQUIDS BY HIGH-INTENSITY ACOUSTIC CAVITATION: THE UNDERLYING THEORY AND ULTRASONIC EQUIPMENT DESIGN PRINCIPLES ; ABSTRACT ; 1. INTRODUCTION ; 2. SHOCK-WAVE MODEL OF ACOUSTIC CAVITATION ; 2.1. Visual Observations of Acoustic Cavitation ; 2.2. Justification for the Shock-Wave Approach ; 2.3. Theory ; 2.3.1. Oscillations of a Single Gas Bubble ; 2.3.2. Cavitation Region ; 2.4. Set-up of the Equations for the Experimental Verification ; 2.4.1. Low Oscillatory Velocities of Acoustic Radiator.
|
505 |
8 |
|
|a 2.4.2. High Oscillatory Velocities of Acoustic Radiator 2.4.3. Interpretation of the Experimental Results of the Work [26] ; 2.5. Experimental Setup ; 2.6. Experimental Results ; 2.7. Section Conclusion ; 3. SELECTION AND DESIGN OF THE MAIN COMPONENTS OF HIGH- CAPACITY ULTRASONIC SYSTEMS ; 3.1. Electromechanical transducer selection considerations ; 3.2. High Power Acoustic Horn Design Principles ; 3.2.1. Criteria For Matching Magnetostrictive Transducer to Water at Cavitation ; 3.2.2. Five-Elements Matching Horns ; 3.2.2.1. Design Principles ; 3.2.2.2. Analysis of Five-Element Horns.
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a Sonochemistry.
|
650 |
|
6 |
|a Sonochimie.
|
650 |
|
7 |
|a SCIENCE
|x Chemistry
|x Industrial & Technical.
|2 bisacsh
|
650 |
|
7 |
|a TECHNOLOGY & ENGINEERING
|x Chemical & Biochemical.
|2 bisacsh
|
650 |
|
7 |
|a Sonochemistry
|2 fast
|
700 |
1 |
|
|a Nowak, Filip M.,
|e editor.
|
776 |
0 |
8 |
|i Print version:
|t Sonochemistry
|d New York : Nova Science Publishers, c2010.
|z 9781617286520 (hardcover)
|w (DLC) 2010025362
|
830 |
|
0 |
|a Chemical engineering methods and technology.
|
856 |
4 |
0 |
|u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=384336
|z Texto completo
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL3022028
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr10686368
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 384336
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 7119613
|
994 |
|
|
|a 92
|b IZTAP
|