Cargando…

Indium : properties, technological applications and health issues /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Woo, Hsaio G. (Editor ), Tsai Choi, Huang (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York : Nova Science Publishers, [2013]
Colección:Chemical engineering methods and technology.
Materials science and technologies series.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • INDIUM: PROPERTIES, TECHNOLOGICAL APPLICATIONS AND HEALTH ISSUES; INDIUM: PROPERTIES, TECHNOLOGICAL APPLICATIONS AND HEALTH ISSUES; LIBRARY OF CONGRESS CATALOGING-IN-PUBLICATION DATA; CONTENTS; PREFACE; Chapter 1: Properties of Indium, Gallium and GA-IN Alloys in Confined Geometry; ABSTRACT; 1. INTRODUCTION; 2. POROUS MATRICES; 2.1. Opal Matrices; 2.2. Porous Glasses; 2.3. Pore Filling; 3. MELTING AND FREEZING OF METALS UNDER NANOCONFINEMENT; 3.1. Ga In Opal Matrices and Porous Glasses; 3.2. In in Opal Matrices; 3.3. Ga-in Alloy under Nanoconfinement; 3.4. Theoretical Models.
  • 4. ATOMIC MOBILITY IN CONFINED METALS4.1. Nuclear Spin Relaxation in Liquid Metals; 4.2. Experimental Results; 5. KNIGHT SHIFT UNDER NANOCONFINEMENT; 5.1. Size Dependence of the Knight Shift; 5.2. Variations of the Knight Shift under Nanoconfinement with Temperature; CONCLUSION; REFERENCES; Chapter 2: Indium: An Efficient Co-Catalyst in Novel CU or NI Catalysts For Selective Reduction of Biomass Derived Fatty Acids to Alochols; ABSTRACT; 1. INTRODUCTION; 2. PREPARATION AND TESTING OF CATALYSTS; 3. RESULTS AND DISCUSSION; HYDROCONVERSION OF ACETIC ACID TO BIOETANOL AND ETHYLACETATE; CONCLUSION.
  • ACKNOWLEDGMENTREFERENCES; Chapter 3: Metal-Insulator Transition In InSB Induced By Doping, Magnetic Field, Uniaxial Stress and Hydrostatic Pressure; ABSTRACT; 1. Introduction; 1.1. Experimental Observations of MIT; 1.2. Theoretical Description of MIT; 2. Scope of the Material; 2.1. The History of InSb Discovering and Crystal Grows Methods; 2.2. InSb Band Structure Parameters; 2.3. InSb Transport Characteristics; 3. METAL-INSULATOR TRANSITION IN P-INSB(GE), P-INSB(MN) AND P-INSB(MN, TE) SINGLE CRYSTALS INDUCED BY IMPURITY CONCENTRATION VARIATION.
  • 3.1. Magnetotransport Effects in p-InSb(Ge), p-InSb(Mn) and p-InSb(Mn, Te) Crystals Around Ncr at the Temperature Range T=20 280K3.2. Low Temperature (T=4,2K 0,3K) Conductivity and Magnetoresistance in p-InSb(Ge), p-InSb(Mn) and p-InSb(Mn, Te) Crystals; 3.3. Low Temperature (T=4,2K 0,3K) Hall Effect in p-InSb(Mn) Crystals; 3.4. Magnetotransport Effects in p-InSb(Mn) and p-InSb(Mn, Te) Crystals in Super-Low Temperature Range (T=300mK 10mK); 3.5. Discussion; 4. Influence of Uniaxial Stress on MIT in P-InSb(Ge) and P-InSb(Mn) Crystals.
  • 4.1. Piezoresistance in Uniaxially Stressed p-InSb, p-Ge(Ga) andp-Si(B) Crystals4.2. Uniaxial Stress Influence on Conductivity and Magnetoresistance of p-InSb(Ge) and p-Ge(Ga) Crystals; 4.3. MIT in p-InSb(Mn) Crystals Induced by Uniaxial Compression; 4.4. Hall Effect In Uniaxially Compressed p-InSb(Ge), p-Ge(Ga) and p-InSb(Mn) Crystals; 4.5. Discussion; 5. MIT IN P-INSB(MN) CRYSTALS INDUCED BY HYDROSTATIC PRESSURE; 5.1. High Temperature (T=280K) Transport and Magnetotransport Effects in Hydrostatically Pressured p-InSb(Mn) and p-InSb(Ge) Crystals.