Rainfall forecasting /
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
New York :
Nova Science Publishers,
c2012.
|
Colección: | Hydrological science and engineering series.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- ""RAINFALL FORECASTING""; ""HYDROLOGICAL SCIENCEAND ENGINEERING""; ""Library of Congress Cataloging-in-Publication Data""; ""CONTENTS""; ""PREFACE""; ""STATISTICAL DOWNSCALING FOR SHORTTERM QUANTITATIVE PRECIPITATIONFORECASTING: SOME ACHIEVEMENTS ANDLONG TRAIL AHEAD""; ""ABSTRACT""; ""INTRODUCTION""; ""DATA""; ""METHODOLOGY""; ""Classification Techniques (SOM) Applied to Study theRelationship between Lightning and Rainfall""; ""Deterministic Statistical Downscaling by Means of Analogues""; ""Deterministic Statistical Downscalingby Means of Neural Networks""
- ""Use of Random Forest for Daily Rainfall Forecast""""Probabilistic Rainfall Forecasts Using Analogues""; ""RESULTS""; ""Lightning and Rainfall""; ""Deterministic QPF at Short Range (6 Hours)""; ""Probabilistic QPF at Short Range (6 Hours)""; ""Downscaling of Daily Precipitation at the Ebro Valley""; ""CONCLUSION""; ""REFERENCES""; ""EMPIRICAL APPROACHES IN LONG-TERMRAINFALL FORECASTING""; ""ABSTRACT""; ""LIST OF ABBREVIATIONS""; ""1. INTRODUCTION""; ""1.1. Historical Perspectives""; ""1.2. Types in Forecasting""; ""1.3. Steps in Forecasting""
- ""2. MATHEMATICAL AND STATISTICALMETHODS IN FORECASTING""""2.1. Time Series""; ""2.1.1. Trend""; ""2.1.2. Seasonality""; ""2.1.3. Cyclic""; ""2.1.4. Scatter Plot""; ""2.1.5. Simple Moving Average""; ""2.2. Basic Quantitative Statistics""; ""2.2.1. Mean (Y )""; ""2.2.2. Median""; ""2.2.3. Mean Squared Deviation (MSD)""; ""2.2.4. Standard Deviation (Ï?""; ""2.2.5. Variance (Ï?2)""; ""2.2.6. Covariance (Covxy)""; ""2.2.7. Correlation Coefficient (rxy)""; ""2.2.8. Autocorrelation (rj)""; ""2.2.9. Autocorrelation Function (ACF)""; ""2.2.10. Least Square Estimate""
- ""2.2.11. Transformations of the Data Series""""3. TIME FIELD QUANTITATIVEFORECASTING TECHNIQUES""; ""3.1. Linear Methods""; ""3.1.1. Linear Regression (LR)""; ""3.1.1.1. Relation with Correlation Coefficient ( rxy )""; ""3.1.1.2. Evaluating the Regression""; ""3.1.1.3. Residuals (e)""; ""3.1.1.4. Coefficient of Determination (R2)""; ""3.1.1.5. F-test""; ""3.1.1.6. Confidence Intervals of Regression Coefficients""; ""3.1.1.7. t-test""; ""3.1.1.8. Assessing Performance of Regression Model""; ""3.1.2. Multiple Linear Regression (MLR)""; ""3.1.2.1. Physical Linkage and Formation of Indices""
- ""3.1.2.2. Selecting Candidate Predictor Set""""3.1.2.3. Procedure for Selecting the Variables for Regression""; ""3.1.2.4. Multicolliearity""; ""3.1.2.5. Development of Regression Model""; ""3.1.2.6. Regression Coefficients""; ""3.1.2.7. Training and Test Period""; ""3.1.2.8. F-test""; ""3.1.2.9. t-test""; ""3.1.2.10. Assumptions in Multiple Linear Regression Models""; ""3.1.2.11. Durbin Watson (DW)""; ""3.1.2.12. Assessment of Model""; ""3.1.3. Autoregressive Integrated MovingAverage (ARIMA) Model""; ""3.1.3.1. Concepts and Tools in Time Series Analysis""; ""3.1.3.2. Backshift Operator""