Fatigue crack growth : mechanisms, behavior, and analysis /
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
New York :
Nova Publishers,
c2012.
|
Colección: | Mechanical engineering theory and applications.
Engineering tools, techniques and tables. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- FATIGUE CRACK GROWTH: MECHANISMS, BEHAVIOR AND ANALYSIS; FATIGUE CRACK GROWTH: MECHANISMS, BEHAVIOR AND ANALYSIS; Library of Congress Cataloging-in-Publication Data; CONTENTS; PREFACE; Chapter 1: THE UNIFIED FATIGUE CRACK GROWTH RATE MODEL; 1. INTRODUCTION; 2. THE GENERAL IDEA OF THE UNIFIED FATIGUE LIFE PREDICTION METHOD; 3. THE TECHNICAL PROBLEMS TO BE SOLVED FOR DEVELOPING A UFCGR MODEL; 3.1. Crack Driving Forces; 3.2. Function Format; 3.3. The Threshold Condition; 3.4. The Unstable Fracture Condition; 4. OUR OWN WORK ON THE DEVELOPMENT FOR A UFCGR MODEL; 4.1. Development of a UFCGR.
- 4.2. The Improved Crack Growth Rate Model under VA Loading4.3. Engineering Methods to Estimate Model Parameters; 4.4. Capabilities of the UFCGR; 5. FURTHER IMPROVEMENTS FOR THE DEVELOPMENTOF THE UNIFIED FATIGUE LIFE PREDICTION METHOD; CONCLUSION; REFERENCES; Chapter 2: EFFECT OF HYDROGEN ENVIRONMENT ON FATIGUE BEHAVIOUR OF HIGH TOUGHNESS STEELS; ABSTRACT; INTRODUCTION; 1. MATERIALS; 2. EXPERIMENTAL PROCEDURE; 3. FATIGUE TEST; 3.1. Fatigue Test Results: F22 Steel; 3.2. Fatigue Test Results: X65 Steel; 3.3. Remarks on Results; 4. FRACTOGRAPHIC ANALYSIS.
- 4.1. Macro and Micrographic Examination: F22 Steel4.2. Macro and Micrographic Examination: X65 Steel; 5. MODEL TO EVALUATE THE FATIGUE CRACK GROWTH; 5.1. Theory of the Model; 5.2. Analytical Procedure; 5.3. Results; 5.4. Application of the Model to an Actual Crack-Like Pipelines Defect; CONCLUSION; ACKNOWLEDGMENTS; REFERENCES; Chapter 3: PRACTICAL TOOLS FOR STATISTICAL FATIGUE DESIGN; NOMENCLATURE; 1. INTRODUCTION; 2. TECHNOLOGICAL SIZE EFFECTS ; 3. STATISTICAL METHODS; 3.1. Distribution of Maximum and Minimum in a Sample; 3.2. The Generalized Extreme Value Distribution.
- 4. PREDICTING THE STATISTICAL SIZE EFFECT IN FATIGUE LIMIT4.1. Background; 4.2. Connection between Crack Size and Endurance Limit; 4.3. Calculating the Size Effect; 4.4. Sample Calculation; 4.5. Considering Technological Effects; 4.6. Effective Stress Area; 4.7. Effective Stress Area of Notched Specimens; 4.8. The Statistical Size Effect Factor; 4.9. Sample Cases; 5. GEOMETRIC SIZE EFFECT; 5.1. Sample Calculation; 6. PREDICTING THE FATIGUE INITIATION LIFE; 6.1. Introduction; 6.2. Predicting Fatigue Crack Initiation Life; 6.3. Sample Calculation Procedure with nth Order Statistics.
- 6.4. Sample Calculation Procedure Using GEV6.5. Crack Initiation Charts; 7. CREATING FATIGUE DESIGN CHARTS; REFERENCES; Chapter 4: PROBABILISTIC FATIGUE CRACK GROWTHANALYSES USING THE BOUNDARY ELEMENTMETHOD AND RELIABILITY ALGORITHMS:PROBABILISTIC ALGORITHMS PERFORMANCEEVALUATION AND APPLICATIONIN MULTI-FRACTURED STRUCTURES; ABSTRACT; INTRODUCTION; LINEAR ELASTIC FRACTURE MECHANICS AND FATIGUE MODELS; BOUNDARY INTEGRAL EQUATIONS; BEM ALGEBRAIC EQUATIONS; RELIABILITY ANALYSIS; COUPLED MECHANICAL AND RELIABILITY PROCEDURES; APPLICATIONS; CONCLUSION; ACKNOWLEDGMENTS; REFERENCES.