Cargando…

Group theory : classes, representation and connections, and applications /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Danellis, Charles W. (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York : Nova Science Publishers, Inc., [2010]
Colección:Mathematics research developments series.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • GROUP THEORY:CLASSES, REPRESENTATION ANDCONNECTIONS, AND APPLICATIONS; GROUP THEORY:CLASSES, REPRESENTATION ANDCONNECTIONS, AND APPLICATIONS; CONTENTS; PREFACE; APPLICATION OF SYMMETRY ANALYSIS TODESCRIPTION OF ORDERED STRUCTURES INCRYSTALS; ABSTRACT; INTRODUCTION; PHYSICAL CHARACTERISTICS OF THE PROBLEM; SYMMETRY-ADAPTED DESCRIPTION OF THE ORDERING MODE; CONDITIONS IMPOSED ON PHYSICAL SOLUTIONS AND THENUMBER OF FREE PARAMETERS; ""MODY"" PROGRAM
  • A PRACTICAL IMPLEMENTATION OFSYMMETRY ANALYSIS; SCALAR ORDER PARAMETERS: SITE OCCUPATION PROBABILITY.
  • VECTOR QUANTITIES
  • MAGNETIC MOMENTS OR ATOMICDISPLACEMENTSTENSORS
  • QUADRUPOLAR ORDERING IN SOLIDS; EXAMPLE 1: MAGNETIC ORDERING
  • COMPARISON OF THREEORDERING WAVE-VECTORS IN; EXAMPLE 2: ORDERING SITE OCCUPATION PROBABILITIES ANDACCOMPANYING ATOMIC DISPLACEMENTS IN ERMN2D2; Hydrogen Ordering; EXAMPLE 3: QUADRUPOLAR MOMENT TENSOR ORDERING IN UPD3; SYMMETRY ANALYSIS OF THE ACCOMPANYING STRUCTURALDEFORMATIONS; REFERENCES; HIGHER ALGEBRAIC K
  • THEORY OFG
  • REPRESENTATIONS FOR THE ACTIONS OF FINITEAND ALGEBRAIC GROUPS G; INTRODUCTION; CHAPTER I. EQUIVARIANT EXACT CATEGORIES.
  • Section 1. Exact Categories and Some Relevant Examples1.1. Definition; 1.2. Examples; Section 2. Equivariant Exact Categories for the Action of Finite Groups; 2.1. Category of G- Representations; 2.2. Examples; 2.3. G-Representations as Functor Categories; 2.4. Relative G- Representations as Functor Categories; Section 3. Equvariant Exact Categories for the Actions of Algebraic Groups; 3.1. Some Generalities on Algebraic Groups; 3.2. Representations of G in P (F); 3.3. G- Modules on G-spaces X.
  • CHAPTER II. HIGHER K-THEORY OF EQUIVARIANT EXACTCATEGORIES
  • DEFINITIONS, EXAMPLES, AND SOME RESULTSSection 1. Brief Review of () n K C, n {601} 0, C an Exact Category; 1.1. Definition of () n K C; 1.2. The Plus Construction
  • Another Definition of (()) () n n K PA =K A n{601} 1; 1.3. Examples of n K of Ordinary And Equivariant Exact Categories; 1.4. Mod- l s higher K-theory (ordinary and equivariant); 1.4.2. Examples; 1.5. Profinite Higher K-Theory (Ordinary and Equivariant); 1.5.2. Examples; Section 2. Induction Techniques for finite group actions ; Mackey functors.
  • 2.1. Mackey functors
  • Brief Review2.1.1. Definition; 2.2. Higher K-Theory as Mackey Functors (For Finite Group Actions); 2.2.2. Theorem [10] [39]; 2.2.3. Remarks; 2.3. Some Consequent Results on Higher K-Theory of Grouprings; 2.3.1. Theorem [39] [10]; 2.3.2. Theorem [39] [9]; Definition 2.3.4.; 2.3.5. Theorem [39] [24]; CHAPTER III. SOME RESULTS ON THE ACTION OF FINITE ANDALGBRAIC GROUPS; Section 1. Some results on (), (), (), (), () n n n n n K RG G RG Cl RG SK RG SG RG n {601} 0(G finite) and consequences for some infinite groups.