|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
EBSCO_on1162038612 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr ||||||||||| |
008 |
090828s2010 nyu ob 001 0 eng |
010 |
|
|
|a 2020688694
|
040 |
|
|
|a DLC
|b eng
|e rda
|c DLC
|d VLY
|d OCLCO
|d N$T
|d YDXCP
|d E7B
|d OCLCF
|d NLGGC
|d EBLCP
|d VTS
|d AGLDB
|d AU@
|d STF
|d K6U
|d OCLCO
|d OCLCQ
|d OCLCO
|
015 |
|
|
|a GBA997400
|2 bnb
|
016 |
7 |
|
|a 015385960
|2 Uk
|
019 |
|
|
|a 758387665
|
020 |
|
|
|a 9781613249680
|q (e-Book)
|
020 |
|
|
|a 1613249683
|
020 |
|
|
|z 9781608761753
|q (hardcover : alk. paper)
|
020 |
|
|
|z 1608761754
|q (hardcover : alk. paper)
|
029 |
1 |
|
|a AU@
|b 000051368518
|
029 |
1 |
|
|a DEBBG
|b BV043159390
|
029 |
1 |
|
|a DEBSZ
|b 421514086
|
035 |
|
|
|a (OCoLC)1162038612
|z (OCoLC)758387665
|
042 |
|
|
|a pcc
|
050 |
0 |
0 |
|a QA174.2
|
072 |
|
7 |
|a MAT
|x 014000
|2 bisacsh
|
082 |
0 |
0 |
|a 512/.2
|2 23
|
049 |
|
|
|a UAMI
|
245 |
0 |
0 |
|a Group theory :
|b classes, representation and connections, and applications /
|c Charles W. Danellis, editor.
|
264 |
|
1 |
|a New York :
|b Nova Science Publishers, Inc.,
|c [2010]
|
300 |
|
|
|a 1 online resource.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Mathematics research developments series
|
504 |
|
|
|a Includes bibliographical references and index.
|
588 |
|
|
|a Description based on print version record; title from PDF title page, viewed (07/10/2020).
|
546 |
|
|
|a English.
|
505 |
0 |
|
|a GROUP THEORY:CLASSES, REPRESENTATION ANDCONNECTIONS, AND APPLICATIONS; GROUP THEORY:CLASSES, REPRESENTATION ANDCONNECTIONS, AND APPLICATIONS; CONTENTS; PREFACE; APPLICATION OF SYMMETRY ANALYSIS TODESCRIPTION OF ORDERED STRUCTURES INCRYSTALS; ABSTRACT; INTRODUCTION; PHYSICAL CHARACTERISTICS OF THE PROBLEM; SYMMETRY-ADAPTED DESCRIPTION OF THE ORDERING MODE; CONDITIONS IMPOSED ON PHYSICAL SOLUTIONS AND THENUMBER OF FREE PARAMETERS; ""MODY"" PROGRAM -- A PRACTICAL IMPLEMENTATION OFSYMMETRY ANALYSIS; SCALAR ORDER PARAMETERS: SITE OCCUPATION PROBABILITY.
|
505 |
8 |
|
|a VECTOR QUANTITIES -- MAGNETIC MOMENTS OR ATOMICDISPLACEMENTSTENSORS -- QUADRUPOLAR ORDERING IN SOLIDS; EXAMPLE 1: MAGNETIC ORDERING -- COMPARISON OF THREEORDERING WAVE-VECTORS IN; EXAMPLE 2: ORDERING SITE OCCUPATION PROBABILITIES ANDACCOMPANYING ATOMIC DISPLACEMENTS IN ERMN2D2; Hydrogen Ordering; EXAMPLE 3: QUADRUPOLAR MOMENT TENSOR ORDERING IN UPD3; SYMMETRY ANALYSIS OF THE ACCOMPANYING STRUCTURALDEFORMATIONS; REFERENCES; HIGHER ALGEBRAIC K -- THEORY OFG -- REPRESENTATIONS FOR THE ACTIONS OF FINITEAND ALGEBRAIC GROUPS G; INTRODUCTION; CHAPTER I. EQUIVARIANT EXACT CATEGORIES.
|
505 |
8 |
|
|a Section 1. Exact Categories and Some Relevant Examples1.1. Definition; 1.2. Examples; Section 2. Equivariant Exact Categories for the Action of Finite Groups; 2.1. Category of G- Representations; 2.2. Examples; 2.3. G-Representations as Functor Categories; 2.4. Relative G- Representations as Functor Categories; Section 3. Equvariant Exact Categories for the Actions of Algebraic Groups; 3.1. Some Generalities on Algebraic Groups; 3.2. Representations of G in P (F); 3.3. G- Modules on G-spaces X.
|
505 |
8 |
|
|a CHAPTER II. HIGHER K-THEORY OF EQUIVARIANT EXACTCATEGORIES -- DEFINITIONS, EXAMPLES, AND SOME RESULTSSection 1. Brief Review of () n K C, n {601} 0, C an Exact Category; 1.1. Definition of () n K C; 1.2. The Plus Construction -- Another Definition of (()) () n n K PA =K A n{601} 1; 1.3. Examples of n K of Ordinary And Equivariant Exact Categories; 1.4. Mod- l s higher K-theory (ordinary and equivariant); 1.4.2. Examples; 1.5. Profinite Higher K-Theory (Ordinary and Equivariant); 1.5.2. Examples; Section 2. Induction Techniques for finite group actions ; Mackey functors.
|
505 |
8 |
|
|a 2.1. Mackey functors -- Brief Review2.1.1. Definition; 2.2. Higher K-Theory as Mackey Functors (For Finite Group Actions); 2.2.2. Theorem [10] [39]; 2.2.3. Remarks; 2.3. Some Consequent Results on Higher K-Theory of Grouprings; 2.3.1. Theorem [39] [10]; 2.3.2. Theorem [39] [9]; Definition 2.3.4.; 2.3.5. Theorem [39] [24]; CHAPTER III. SOME RESULTS ON THE ACTION OF FINITE ANDALGBRAIC GROUPS; Section 1. Some results on (), (), (), (), () n n n n n K RG G RG Cl RG SK RG SG RG n {601} 0(G finite) and consequences for some infinite groups.
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a Group theory.
|
650 |
|
6 |
|a Théorie des groupes.
|
650 |
|
7 |
|a MATHEMATICS
|x Group Theory.
|2 bisacsh
|
650 |
|
7 |
|a Group theory
|2 fast
|
700 |
1 |
|
|a Danellis, Charles W.,
|e editor.
|
776 |
0 |
8 |
|i Print version:
|t Group theory
|d New York :
|b Nova Science Publishers, Inc.,
|c [2010]
|z 1608761754 (hardcover : alk. paper)
|w (DLC) 2009034517
|
830 |
|
0 |
|a Mathematics research developments series.
|
856 |
4 |
0 |
|u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=398812
|z Texto completo
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL3019252
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr10670817
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 398812
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 7222247
|
994 |
|
|
|a 92
|b IZTAP
|