Cargando…

Group theory : classes, representation and connections, and applications /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Danellis, Charles W. (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York : Nova Science Publishers, Inc., [2010]
Colección:Mathematics research developments series.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBSCO_on1162038612
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |||||||||||
008 090828s2010 nyu ob 001 0 eng
010 |a  2020688694 
040 |a DLC  |b eng  |e rda  |c DLC  |d VLY  |d OCLCO  |d N$T  |d YDXCP  |d E7B  |d OCLCF  |d NLGGC  |d EBLCP  |d VTS  |d AGLDB  |d AU@  |d STF  |d K6U  |d OCLCO  |d OCLCQ  |d OCLCO 
015 |a GBA997400  |2 bnb 
016 7 |a 015385960  |2 Uk 
019 |a 758387665 
020 |a 9781613249680  |q (e-Book) 
020 |a 1613249683 
020 |z 9781608761753  |q (hardcover : alk. paper) 
020 |z 1608761754  |q (hardcover : alk. paper) 
029 1 |a AU@  |b 000051368518 
029 1 |a DEBBG  |b BV043159390 
029 1 |a DEBSZ  |b 421514086 
035 |a (OCoLC)1162038612  |z (OCoLC)758387665 
042 |a pcc 
050 0 0 |a QA174.2 
072 7 |a MAT  |x 014000  |2 bisacsh 
082 0 0 |a 512/.2  |2 23 
049 |a UAMI 
245 0 0 |a Group theory :  |b classes, representation and connections, and applications /  |c Charles W. Danellis, editor. 
264 1 |a New York :  |b Nova Science Publishers, Inc.,  |c [2010] 
300 |a 1 online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Mathematics research developments series 
504 |a Includes bibliographical references and index. 
588 |a Description based on print version record; title from PDF title page, viewed (07/10/2020). 
546 |a English. 
505 0 |a GROUP THEORY:CLASSES, REPRESENTATION ANDCONNECTIONS, AND APPLICATIONS; GROUP THEORY:CLASSES, REPRESENTATION ANDCONNECTIONS, AND APPLICATIONS; CONTENTS; PREFACE; APPLICATION OF SYMMETRY ANALYSIS TODESCRIPTION OF ORDERED STRUCTURES INCRYSTALS; ABSTRACT; INTRODUCTION; PHYSICAL CHARACTERISTICS OF THE PROBLEM; SYMMETRY-ADAPTED DESCRIPTION OF THE ORDERING MODE; CONDITIONS IMPOSED ON PHYSICAL SOLUTIONS AND THENUMBER OF FREE PARAMETERS; ""MODY"" PROGRAM -- A PRACTICAL IMPLEMENTATION OFSYMMETRY ANALYSIS; SCALAR ORDER PARAMETERS: SITE OCCUPATION PROBABILITY. 
505 8 |a VECTOR QUANTITIES -- MAGNETIC MOMENTS OR ATOMICDISPLACEMENTSTENSORS -- QUADRUPOLAR ORDERING IN SOLIDS; EXAMPLE 1: MAGNETIC ORDERING -- COMPARISON OF THREEORDERING WAVE-VECTORS IN; EXAMPLE 2: ORDERING SITE OCCUPATION PROBABILITIES ANDACCOMPANYING ATOMIC DISPLACEMENTS IN ERMN2D2; Hydrogen Ordering; EXAMPLE 3: QUADRUPOLAR MOMENT TENSOR ORDERING IN UPD3; SYMMETRY ANALYSIS OF THE ACCOMPANYING STRUCTURALDEFORMATIONS; REFERENCES; HIGHER ALGEBRAIC K -- THEORY OFG -- REPRESENTATIONS FOR THE ACTIONS OF FINITEAND ALGEBRAIC GROUPS G; INTRODUCTION; CHAPTER I. EQUIVARIANT EXACT CATEGORIES. 
505 8 |a Section 1. Exact Categories and Some Relevant Examples1.1. Definition; 1.2. Examples; Section 2. Equivariant Exact Categories for the Action of Finite Groups; 2.1. Category of G- Representations; 2.2. Examples; 2.3. G-Representations as Functor Categories; 2.4. Relative G- Representations as Functor Categories; Section 3. Equvariant Exact Categories for the Actions of Algebraic Groups; 3.1. Some Generalities on Algebraic Groups; 3.2. Representations of G in P (F); 3.3. G- Modules on G-spaces X. 
505 8 |a CHAPTER II. HIGHER K-THEORY OF EQUIVARIANT EXACTCATEGORIES -- DEFINITIONS, EXAMPLES, AND SOME RESULTSSection 1. Brief Review of () n K C, n {601} 0, C an Exact Category; 1.1. Definition of () n K C; 1.2. The Plus Construction -- Another Definition of (()) () n n K PA =K A n{601} 1; 1.3. Examples of n K of Ordinary And Equivariant Exact Categories; 1.4. Mod- l s higher K-theory (ordinary and equivariant); 1.4.2. Examples; 1.5. Profinite Higher K-Theory (Ordinary and Equivariant); 1.5.2. Examples; Section 2. Induction Techniques for finite group actions ; Mackey functors. 
505 8 |a 2.1. Mackey functors -- Brief Review2.1.1. Definition; 2.2. Higher K-Theory as Mackey Functors (For Finite Group Actions); 2.2.2. Theorem [10] [39]; 2.2.3. Remarks; 2.3. Some Consequent Results on Higher K-Theory of Grouprings; 2.3.1. Theorem [39] [10]; 2.3.2. Theorem [39] [9]; Definition 2.3.4.; 2.3.5. Theorem [39] [24]; CHAPTER III. SOME RESULTS ON THE ACTION OF FINITE ANDALGBRAIC GROUPS; Section 1. Some results on (), (), (), (), () n n n n n K RG G RG Cl RG SK RG SG RG n {601} 0(G finite) and consequences for some infinite groups. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Group theory. 
650 6 |a Théorie des groupes. 
650 7 |a MATHEMATICS  |x Group Theory.  |2 bisacsh 
650 7 |a Group theory  |2 fast 
700 1 |a Danellis, Charles W.,  |e editor. 
776 0 8 |i Print version:  |t Group theory  |d New York :  |b Nova Science Publishers, Inc.,  |c [2010]  |z 1608761754 (hardcover : alk. paper)  |w (DLC) 2009034517 
830 0 |a Mathematics research developments series. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=398812  |z Texto completo 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL3019252 
938 |a ebrary  |b EBRY  |n ebr10670817 
938 |a EBSCOhost  |b EBSC  |n 398812 
938 |a YBP Library Services  |b YANK  |n 7222247 
994 |a 92  |b IZTAP