MARC

LEADER 00000cam a2200000 i 4500
001 EBSCO_on1162020329
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |||||||||||
008 110322s2011 nyu ob 001 0 eng
010 |a  2020677259 
040 |a DLC  |b eng  |e rda  |c DLC  |d OCLCF  |d VLY  |d OCLCO  |d N$T  |d YDXCP  |d E7B  |d EBLCP  |d AZK  |d LOA  |d MERUC  |d AGLDB  |d MOR  |d PIFAG  |d ZCU  |d U3W  |d STF  |d WRM  |d VTS  |d NRAMU  |d ICG  |d INT  |d VT2  |d AU@  |d WYU  |d DKC  |d M8D  |d UKCRE  |d AJS  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 839301781  |a 961599012  |a 962703057  |a 966220849  |a 988506392  |a 992052241  |a 1037910898  |a 1038651674  |a 1045505883  |a 1055391832  |a 1065853736  |a 1081223628  |a 1153515750  |a 1181904381 
020 |a 9781620819685  |q ebook 
020 |a 1620819686 
020 |z 9781613240106  |q hardcover 
020 |z 1613240104 
029 1 |a AU@  |b 000053297360 
029 1 |a AU@  |b 000062325288 
029 1 |a DEBBG  |b BV043775829 
029 1 |a DEBBG  |b BV044089394 
029 1 |a DEBSZ  |b 472783335 
029 1 |a NZ1  |b 15347710 
035 |a (OCoLC)1162020329  |z (OCoLC)839301781  |z (OCoLC)961599012  |z (OCoLC)962703057  |z (OCoLC)966220849  |z (OCoLC)988506392  |z (OCoLC)992052241  |z (OCoLC)1037910898  |z (OCoLC)1038651674  |z (OCoLC)1045505883  |z (OCoLC)1055391832  |z (OCoLC)1065853736  |z (OCoLC)1081223628  |z (OCoLC)1153515750  |z (OCoLC)1181904381 
042 |a pcc 
050 0 0 |a TK9185 
072 7 |a TEC  |x 028000  |2 bisacsh 
082 0 0 |a 621.48/33  |2 22 
049 |a UAMI 
245 0 0 |a Nuclear materials /  |c Michael P. Hemsworth, editor. 
264 1 |a New York :  |b Nova Science Publishers, Inc.,  |c [2011] 
300 |a 1 online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Physics research and technology 
490 1 |a Materials science and technologies 
504 |a Includes bibliographical references and index. 
588 |a Description based on print version record. 
546 |a English. 
505 0 |a NUCLEAR MATERIALS ; NUCLEAR MATERIALS ; Contents; Preface; Co-Precipitation Model Coupled with Prediction Model for the Removal of Arsenic from Ground and Surface Waters Using Lanthanides; Abstract; 1. Introduction; 1.1. Sources of Arsenic in Ground Water; 1.2. Removal of Arsenic through Adsorption on Solid Surfaces; 1.3. Objectives of This Chapter; 2. Background; 2.1. Factors Influencing Arsenic Migration in Natural Waters; Inorganic Carbon Concentration; Phosphate and Silicate Concentration; Organic Matter Content; 2.2. Aqueous Speciation of Arsenic; 2.3. Surface Speciation of Arsenic. 
505 8 |a 2.4. Surface Complexation Models for Arsenic Adsorption2.5. Solubility of Rare Earth Arsenates Compared to Arsenates of Other Ions; Suitability of Calcium and Magnesium Arsenates; Suitability of Iron (III) Arsenates; Suitability of Lead Arsenates; Suitability of Arsenates of Lanthanides and Actinides; 3. Methods; 3.1. Predictive Model for Arsenic Removal from Soil; 3.1.1. Integrity of Data Used for Developing and Testing the Predictive Model; 3.1.2. Integrity of Data Used in Model Fitting; 3.1.3. Predictive Model Fitting; 3.1.4. Measured Adsorption Surfaces as a Function of Soils Parameters. 
505 8 |a 3.1.5. Adsorption Contours of Arsenic as a Function of Soil Parameters3.1.6. Adsorption Envelops of Arsenic; 3.2. Surface Precipitation Model for Arsenic Adsorption; 3.2.1. Linear Free Energy Model; 3.2.2. Model Adaptation for Surface Precipitation of Arsenic; 3.2.3. Surface Precipitation Reactions; 3.2.4. Calculating Equilibrium Surface Precipitation Constants; 4. Results and Discussion; 4.1. Fitted Predictive Model for Arsenic Adsorption; 4.1.1. Validation of Prediction Model; 4.2. Surface Precipitation of Arsenic onto Hydrated Oxides of Lanthanides and Actinides; 5. Conclusions. 
505 8 |a 2.1. First-Principles Calculations of Thermodynamic Properties of Ordered Solids2.2. First-Principles Calculations of Thermodynamics of Disordered Solids. The Cluster Expansion Formalism; 2.3. CALPHAD Modeling of Thermodynamics; 2.4. CALPHAD Modeling of Atomic Mobility; 3. Results and Discussion; 3.1. Cluster Expansion in the Bcc U-Mo System. U(Mo) Phase Stability; 3.2. UAl3 Stabilization by Si Addition. UAl3-USi3 Pseudobinary System Ground State; 3.3. Low Silicon U(Al, Si)3 Stabilization by Zr Addition. Experimental Results. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Nuclear reactors  |x Materials. 
650 0 |a Nuclear chemistry. 
650 0 |a Nuclear waste. 
650 6 |a Réacteurs nucléaires  |x Matériaux. 
650 6 |a Chimie nucléaire. 
650 7 |a TECHNOLOGY & ENGINEERING  |x Power Resources  |x Nuclear.  |2 bisacsh 
650 7 |a Nuclear chemistry  |2 fast 
650 7 |a Nuclear reactors  |x Materials  |2 fast 
650 7 |a Radioactive wastes  |2 fast 
700 1 |a Hemsworth, Michael P.,  |e editor. 
776 0 8 |i Print version:  |t Nuclear materials  |d Hauppauge, N.Y. : Nova Science Publishers, 2011.  |z 9781613240106 (hardcover)  |w (DLC) 2011007115 
830 0 |a Physics research and technology. 
830 0 |a Materials science and technologies series. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=541453  |z Texto completo 
938 |a EBL - Ebook Library  |b EBLB  |n EBL3022022 
938 |a ebrary  |b EBRY  |n ebr10686362 
938 |a EBSCOhost  |b EBSC  |n 541453 
938 |a YBP Library Services  |b YANK  |n 10371803 
994 |a 92  |b IZTAP