Cargando…

Python feature engineering cookbook : over 70 recipes for creating, engineering, and transforming features to build machine learning models /

"Extract accurate information from data to train and improve machine learning models using NumPy, SciPy, pandas, and scikit-learn libraries Key Features Discover solutions for feature generation, feature extraction, and feature selection Uncover the end-to-end feature engineering process across...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Galli, Soledad (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham, UK : Packt Publishing, 2020.
Temas:
Acceso en línea:Texto completo
Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBSCO_on1160207405
003 OCoLC
005 20231017213018.0
006 m o d
007 cr unu||||||||
008 200630s2020 enka ob 000 0 eng d
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d VLY  |d EBLCP  |d CHVBK  |d YDX  |d TEFOD  |d OCLCF  |d N$T  |d UKAHL  |d OCL  |d OCLCO  |d NLW  |d OCLCQ  |d OCLCO  |d OCLCQ 
019 |a 1137843678  |a 1138679368 
020 |a 9781789807820 
020 |a 1789807824 
020 |z 9781789806311 
020 |z 1789806313 
029 1 |a CHNEW  |b 001079473 
029 1 |a CHVBK  |b 586944087 
035 |a (OCoLC)1160207405  |z (OCoLC)1137843678  |z (OCoLC)1138679368 
037 |a CL0501000120  |b Safari Books Online 
050 4 |a QA76.73.P98 
082 0 4 |a 005.133  |2 23 
049 |a UAMI 
100 1 |a Galli, Soledad,  |e author. 
245 1 0 |a Python feature engineering cookbook :  |b over 70 recipes for creating, engineering, and transforming features to build machine learning models /  |c Soledad Galli. 
264 1 |a Birmingham, UK :  |b Packt Publishing,  |c 2020. 
300 |a 1 online resource (1 volume) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Online resource; title from title page (Safari, viewed June 26, 2020). 
504 |a Includes bibliographical references. 
505 0 |a Preface -- Foreseeing Variable Problems When Building ML Models -- Imputing Missing Data -- Encoding Categorical Variables -- Transforming Numerical Variables -- Performing Variable Discretization -- Working with Outliers -- Deriving Features from Dates and Time Variables -- Performing Feature Scaling -- Applying Mathematical Computations to Features -- Creating Features with Transactional and Time Series Data -- Extracting Features from Text Variables 
520 |a "Extract accurate information from data to train and improve machine learning models using NumPy, SciPy, pandas, and scikit-learn libraries Key Features Discover solutions for feature generation, feature extraction, and feature selection Uncover the end-to-end feature engineering process across continuous, discrete, and unstructured datasets Implement modern feature extraction techniques using Python's pandas, scikit-learn, SciPy and NumPy libraries Book Description Feature engineering is invaluable for developing and enriching your machine learning models. In this cookbook, you will work with the best tools to streamline your feature engineering pipelines and techniques and simplify and improve the quality of your code. Using Python libraries such as pandas, scikit-learn, Featuretools, and Feature-engine, you'll learn how to work with both continuous and discrete datasets and be able to transform features from unstructured datasets. You will develop the skills necessary to select the best features as well as the most suitable extraction techniques. This book will cover Python recipes that will help you automate feature engineering to simplify complex processes. You'll also get to grips with different feature engineering strategies, such as the box-cox transform, power transform, and log transform across machine learning, reinforcement learning, and natural language processing (NLP) domains. By the end of this book, you'll have discovered tips and practical solutions to all of your feature engineering problems. What you will learn Simplify your feature engineering pipelines with powerful Python packages Get to grips with imputing missing values Encode categorical variables with a wide set of techniques Extract insights from text quickly and effortlessly Develop features from transactional data and time series data Derive new features by combining existing variables Understand how to transform, discretize, and scale your variables Create informative variables from date and time Who this book is for This book is for machine learning professionals, AI engineers, data scientists, and NLP and reinforcement learning engineers who want to optimize and enrich their machine learning models with the best features. Knowledge of machine learning and Python coding will assist you with understanding the concepts covered in this book."--EBook Central 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Python (Computer program language) 
650 0 |a Application software  |x Development. 
650 0 |a Machine learning. 
650 6 |a Python (Langage de programmation) 
650 6 |a Logiciels d'application  |x Développement. 
650 6 |a Apprentissage automatique. 
650 7 |a Data capture & analysis.  |2 bicssc 
650 7 |a Data mining.  |2 bicssc 
650 7 |a Information architecture.  |2 bicssc 
650 7 |a Database design & theory.  |2 bicssc 
650 7 |a Computers  |x Data Processing.  |2 bisacsh 
650 7 |a Computers  |x Database Management  |x Data Mining.  |2 bisacsh 
650 7 |a Computers  |x Data Modeling & Design.  |2 bisacsh 
650 7 |a Application software  |x Development.  |2 fast  |0 (OCoLC)fst00811707 
650 7 |a Machine learning.  |2 fast  |0 (OCoLC)fst01004795 
650 7 |a Python (Computer program language)  |2 fast  |0 (OCoLC)fst01084736 
776 0 8 |i Print version:  |a Galli, Soledad.  |t Python Feature Engineering Cookbook : Over 70 Recipes for Creating, Engineering, and Transforming Features to Build Machine Learning Models.  |d Birmingham : Packt Publishing, Limited, ©2020  |z 9781789806311 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2358819  |z Texto completo 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781789806311/?ar  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH37189987 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL6027830 
938 |a EBSCOhost  |b EBSC  |n 2358819 
938 |a YBP Library Services  |b YANK  |n 16628874 
994 |a 92  |b IZTAP