Cargando…

Neural networks : history and applications /

"With respect to the ever-increasing developments in artificial intelligence and artificial neural network applications in different scopes such as medicine, industry, biology, history, military industries, recognition science, space, machine learning and etc., Neural Networks: History and Appl...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Alexander, Doug (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York : Nova Science Publishers, Inc., [2020]
Colección:Computer science, technology and applications.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBSCO_on1149309780
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 191226s2020 nyua ob 001 0 eng
010 |a  2019059683 
040 |a DLC  |b eng  |e rda  |c DLC  |d OCLCO  |d YDX  |d OCLCQ  |d N$T  |d CHVBK  |d OCLCO  |d OCLCF  |d EBLCP  |d OCLCO  |d LA0  |d K6U  |d OCLCQ  |d YDX  |d OCLCQ  |d OCLCO 
019 |a 1144892579 
020 |a 9781536172331  |q electronic book 
020 |a 1536172332  |q electronic book 
020 |z 9781536171884  |q hardcover 
029 1 |a CHVBK  |b 589388533 
029 1 |a CHDSB  |b 007191233 
035 |a (OCoLC)1149309780  |z (OCoLC)1144892579 
042 |a pcc 
050 0 4 |a QA76.87  |b .N4866 2020 
082 0 0 |a 006.3/2  |2 23 
049 |a UAMI 
245 0 0 |a Neural networks :  |b history and applications /  |c Doug Alexander, editor. 
264 1 |a New York :  |b Nova Science Publishers, Inc.,  |c [2020] 
300 |a 1 online resource (xii, 217 pages) :  |b color illustrations. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Computer science, technology and applications 
504 |a Includes bibliographical references and index. 
505 0 |a Artificial neural networks, concept, application and types / M. Khishe and Gh. R. Parvizi, Department of Electronic Engineering, Imam Khomeini University of Naval Science, Nowshahr, Iran, and others -- Emotion recognition from facial expressions using artificial neural networks : A review / Sibel Senan, Zeynep Orman and Fulya Akcan, Department of Computer Engineering, Istanbul University-Cerrahpasa, Istanbul, Turkey -- Dipole mode index prediction with artificial neural networks / Kalpesh R. Patil and Masaaki Iiyama, Post-Doctorate Research Scholar, Academic Center for Computing and Media Studies, Kyoto University, Kyoto, Japan, and others. 
520 |a "With respect to the ever-increasing developments in artificial intelligence and artificial neural network applications in different scopes such as medicine, industry, biology, history, military industries, recognition science, space, machine learning and etc., Neural Networks: History and Applications first discusses a comprehensive investigation of artificial neural networks. Next, the authors focus on studies carried out with the artificial neural network approach on the emotion recognition from 2D facial expressions between 2009 and 2019. The major objective of this study is to review, identify, evaluate and analyze the performance of artificial neural network models in emotion recognition applications. This compilation also proposes a simple nonlinear approach for dipole mode index prediction where past values of dipole mode index were used as inputs, and future values were predicted by artificial neural networks. The study was also conducted for seasonal dipole mode index prediction because the dipole mode index is more prominent in the Sep-Oct-Nov season. A subsequent study focuses on how mammography has a high false negative and false positive rate. As such, computer-aided diagnosis systems have been commercialized to help in micro-calcification detection and malignancy differentiation. Yet, little has been explored in differentiating breast cancers with artificial neural networks, one example of computer-aided diagnosis systems. The authors aim to bridge this gap in research. The penultimate chapter reviews the general conditions under which synaptic plasticity most effectively takes place to support the supervised learning of a precise temporal code. Then, the accuracy of each plasticity rule with respect to its temporal encoding precision is examined, and the maximum number of input patterns it can memorize using the precise timings of individual spikes as an indicator of storage capacity in different control and recognition tasks is explored. In closing, a case study is presented centered on an intelligent decision support system that is built on a neural network model based on the Encog machine learning framework to predict cryptocurrency close prices"--  |c Provided by publisher. 
588 |a Description based on online resource; title from digital title page (viewed on March 07, 2023). 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Neural networks (Computer science) 
650 6 |a Réseaux neuronaux (Informatique) 
650 7 |a Neural networks (Computer science)  |2 fast 
650 7 |a Neuronales Netz  |2 gnd 
700 1 |a Alexander, Doug,  |e editor. 
776 0 8 |i Print version:  |t Neural networks  |d New York : Nova Science Publishers, Inc., [2020]  |z 9781536171884  |w (DLC) 2019059682 
830 0 |a Computer science, technology and applications. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2323785  |z Texto completo 
938 |a YBP Library Services  |b YANK  |n 16632008 
938 |a EBSCOhost  |b EBSC  |n 2323785 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL6129371 
994 |a 92  |b IZTAP