Identity of long-tail entities in text /
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Amsterdam, Netherlands :
IOS Press,
2019.
|
Colección: | Studies on the Semantic Web ;
v. 043. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Intro
- Title Page
- Contents
- Acronyms
- 1 Introduction
- 1.1 Background: Identity in the digital era
- 1.2 Challenge: Entity Linking in the long tail
- 1.3 Research questions
- 1.4 Approach and structure of the thesis
- 1.4.1 Describing and observing the head and the tail
- 1.4.2 Analyzing the evaluation bias on the long tail
- 1.4.3 Improving the evaluation bias on the long tail
- 1.4.4 Enabling access to knowledge about long-tail entities beyond DBpedia
- 1.4.5 The role of knowledge in establishing identity of long-tail entities
- 1.5 Summary of findings
- 1.6 Software and data
- 2 Describing and Observing the Head and the Tail of Entity Linking
- 2.1 Introduction
- 2.2 Related work
- 2.3 Approach
- 2.3.1 The head-tail phenomena of the entity linking task
- 2.3.2 Hypotheses on the head-tail phenomena of the entity linking task
- 2.3.3 Datasets and systems
- 2.3.4 Evaluation
- 2.4 Analysis of data properties
- 2.4.1 Frequency distribution of forms and instances in datasets
- 2.4.2 PageRank distribution of instances in datasets
- 2.4.3 Ambiguity distribution of forms
- 2.4.4 Variance distribution of instances
- 2.4.5 Interaction between frequency, PageRank, and ambiguity/variance
- 2.4.6 Frequency distribution for a single form or an instance
- 2.5 Analysis of system performance and data properties
- 2.5.1 Correlating system performance with form ambiguity
- 2.5.2 Correlating system performance with form frequency, instance frequency, and PageRank
- 2.5.3 Correlating system performance with ambiguity and frequency of forms jointly
- 2.5.4 Correlating system performance with frequency of instances for ambiguous forms
- 2.6 Summary of findings
- 2.7 Recommended actions
- 2.8 Conclusions
- 3 Analyzing the Evaluation bias on the Long Tail of Disambiguation & Reference
- 3.1 Introduction
- 3.2 Temporal aspect of the disambiguation task
- 3.3 Related work
- 3.4 Preliminary study of EL evaluation datasets
- 3.4.1 Datasets
- 3.4.2 Dataset characteristics
- 3.4.3 Distributions of instances and surface forms
- 3.4.4 Discussion and roadmap
- 3.5 Semiotic generation and context model
- 3.6 Methodology
- 3.6.1 Metrics
- 3.6.2 Tasks
- 3.6.3 Datasets
- 3.7 Analysis
- 3.8 Proposal for improving evaluation
- 3.9 Conclusions
- 4 Improving the Evaluation bias on the Long Tail of Disambiguation & Reference
- 4.1 Introduction
- 4.2 Motivation & target communities
- 4.2.1 Disambiguation & reference
- 4.2.2 Reading Comprehension & Question Answering
- 4.2.3 Moving away from semantic overfitting
- 4.3 Task requirements
- 4.4 Methods for creating an event-based task
- 4.4.1 State of text-to-data datasets
- 4.4.2 From data to text
- 4.5 Data & resources
- 4.5.1 Structured data
- 4.5.2 Example document
- 4.5.3 Licensing & availability
- 4.6 Task design
- 4.6.1 Subtasks
- 4.6.2 Question template