Introduction to OFDM receiver design and simulation /
Providing a fundamental understanding of the receiver design applying OFDM technology, this book is an accessible introduction to Orthogonal frequency-division multiplexing (OFDM) receiver design, a technology that allows digitized data to be carried by multiple carriers. --
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Norwood, MA :
Artech House,
[2020]
|
Colección: | Artech House mobile communications series.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Intro
- Introduction to OFDM Receiver Designand Simulation
- Contents
- 1 Discrete Time Signals and Discrete Fourier Transform
- 1.1 Introduction
- 1.2 Discrete Time Signals
- 1.3 Fourier Series Representation
- 1.4 DFT
- 1.5 Sampling Theorem and Signal Interpolation
- 1.6 Properties of the DFT
- 1.7 Time and Frequency Relationship of the DFT
- 1.8 Operations of the DFT
- 1.8.1 Linearity
- 1.8.2 Time Shift
- 1.8.3 Frequency Shift
- 1.8.4 Circular Convolution
- 1.9 Z-Transform
- 1.10 Summary
- References
- 2 Single-Carrier Modulation
- 2.1 Introduction
- 2.2 Data Transmission Rate
- 2.3 Bandpass Signals
- 2.4 Digitally Modulated Signals
- 2.4.1 PAM
- 2.4.2 PSK
- 2.4.3 QAM
- 2.4.4 FSK
- 2.5 Pulse Shaping
- 2.6 Summary
- References
- 3 Multicarrier Modulation
- 3.1 Introduction
- 3.2 OFDM Waveform
- 3.3 OFDM Characteristics
- 3.3.1 Orthogonality
- 3.3.2 OFDM Spectrum
- 3.3.3 PAPR
- 3.3.4 Cyclic Prefix
- 3.3.5 FFT
- 3.4 Time and Frequency Parameters
- 3.5 Window Function
- 3.6 Digital Modulation
- 3.7 OFDM Waveform Properties
- 3.8 Summary
- References
- 4 OFDM Transmission
- 4.1 Introduction
- 4.2 OFDM Transmitter Architecture
- 4.3 Signal Transmission Format
- 4.4 Preamble Signal for IEEE 802.11a
- 4.4.1 Short Sequence
- 4.4.2 Long Sequence
- 4.5 IEEE 802.11a Header Format
- 4.6 IEEE 802.11a Data Format
- 4.7 OFDM Receiver Architecture
- 4.8 Summary
- Reference
- 5 Shift Register Sequence and Data Scrambler
- 5.1 Introduction
- 5.2 Binary Field
- 5.3 Galois Field
- 5.4 Sequence Generator
- 5.5 Period of Sequence Generator
- 5.6 Maximum-Length Sequences
- 5.6.1 Properties of the Maximum-Length Sequence
- 5.6.2 Sequence Generator from the IEEE 802.11a
- 5.7 Data Scrambler
- 5.8 Summary
- References
- 6 Radio-Wave Propagation Model
- 6.1 Introduction
- 6.2 Large-Scale Propagation Model
- 6.2.1 Free-Space Propagation Loss
- 6.2.2 Two-Ray Model
- 6.2.3 Empirical Model
- 6.3 Small-Scale Propagation Model
- 6.3.1 Time Dispersion
- 6.3.2 Frequency Dispersion
- 6.3.3 Clark's Fading Model
- 6.4 Receiver Signal-to-Noise Ratio (SNR)
- 6.4.1 Thermal Noise
- 6.4.2 Noise Factor
- 6.4.3 Amplifier Model
- 6.4.4 Cable Loss Model
- 6.4.5 Equivalent Noise Temperature at Receiver Front End
- 6.5 Range Determination
- 6.6 SNR
- 6.7 Summary
- References-7 Error-Correcting Codes and Interleaver-7.1 Introduction-7.2 Linear Block Codes-7.2.1 Generator Matrix-7.2.2 Parity Check Matrix-7.2.3 Syndrome-7.2.4 Error Correction-7.2.5 Hamming Codes-7.3 Cyclic Codes-7.3.1 Generator Polynomial-7.3.2 Syndrome Polynomial-7.4 Convolutional Code-7.4.1 Convolutional Encoder-7.4.2 Convolutional Decoder and Viterbi Algorithm-7.4.3 Convolutional Code in the IEEE 802.11a-7.4.4 Punctured Convolutional Codes-7.5 Interleaver-7.5.1 Illustration of an Interleaver-7.5.2 Interleaver Used in the IEEE 802.11a
- 7.5.3 Deinterleaver Used in the IEEE 802.11a