Cargando…

Reinforcement Learning Algorithms with Python : Learn, Understand, and Develop Smart Algorithms for Addressing AI Challenges /

With this book, you will understand the core concepts and techniques of reinforcement learning. You will take a look into each RL algorithm and will develop your own self-learning algorithms and models. You will optimize the algorithms for better precision, use high-speed actions and lower the risk...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Lonza, Andrea
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham : Packt Publishing, Limited, 2019.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBSCO_on1125107738
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 191102s2019 enk o 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d TEFOD  |d UKMGB  |d EBLCP  |d OCLCF  |d OCLCQ  |d UKAHL  |d MERUC  |d OCLCQ  |d N$T  |d OCLCQ  |d OCLCO  |d NZAUC  |d OCLCQ 
015 |a GBB9H7912  |2 bnb 
016 7 |a 019591497  |2 Uk 
020 |a 1789139708 
020 |a 9781789139709  |q (electronic bk.) 
029 1 |a UKMGB  |b 019591497 
035 |a (OCoLC)1125107738 
037 |a D518365C-A419-4AF3-8B4C-AD04FD491FF8  |b OverDrive, Inc.  |n http://www.overdrive.com 
050 4 |a QA76.9.A43 
082 0 4 |a 005.1  |2 23 
049 |a UAMI 
100 1 |a Lonza, Andrea. 
245 1 0 |a Reinforcement Learning Algorithms with Python :  |b Learn, Understand, and Develop Smart Algorithms for Addressing AI Challenges /  |c Andrea Lonza. 
260 |a Birmingham :  |b Packt Publishing, Limited,  |c 2019. 
300 |a 1 online resource (356 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Print version record. 
505 0 |a Cover; Title Page; Copyright and Credits; Dedication; About Packt; Contributors; Table of Contents; Preface; Section 1: Algorithms and Environments; Chapter 1: The Landscape of Reinforcement Learning; An introduction to RL; Comparing RL and supervised learning; History of RL; Deep RL; Elements of RL; Policy; The value function; Reward; Model; Applications of RL; Games; Robotics and Industry 4.0; Machine learning; Economics and finance; Healthcare; Intelligent transportation systems; Energy optimization and smart grid; Summary; Questions; Further reading 
505 8 |a Chapter 2: Implementing RL Cycle and OpenAI GymSetting up the environment; Installing OpenAI Gym; Installing Roboschool; OpenAI Gym and RL cycles; Developing an RL cycle; Getting used to spaces; Development of ML models using TensorFlow; Tensor; Constant; Placeholder; Variable; Creating a graph; Simple linear regression example; Introducing TensorBoard; Types of RL environments; Why different environments?; Open source environments; Summary; Questions; Further reading; Chapter 3: Solving Problems with Dynamic Programming; MDP; Policy; Return; Value functions; Bellman equation 
505 8 |a Categorizing RL algorithmsModel-free algorithms; Value-based algorithms; Policy gradient algorithms; Actor-Critic algorithms; Hybrid algorithms; Model-based RL; Algorithm diversity; Dynamic programming; Policy evaluation and policy improvement; Policy iteration; Policy iteration applied to FrozenLake; Value iteration; Value iteration applied to FrozenLake; Summary; Questions; Further reading; Section 2: Model-Free RL Algorithms; Chapter 4: Q-Learning and SARSA Applications; Learning without a model; User experience; Policy evaluation; The exploration problem; Why explore?; How to explore 
505 8 |a TD learningTD update; Policy improvement; Comparing Monte Carlo and TD; SARSA; The algorithm; Applying SARSA to Taxi-v2; Q-learning; Theory; The algorithm; Applying Q-learning to Taxi-v2; Comparing SARSA and Q-learning; Summary; Questions; Chapter 5: Deep Q-Network; Deep neural networks and Q-learning; Function approximation; Q-learning with neural networks; Deep Q-learning instabilities; DQN; The solution; Replay memory; The target network; The DQN algorithm; The loss function; Pseudocode; Model architecture; DQN applied to Pong; Atari games; Preprocessing; DQN implementation; DNNs 
505 8 |a The experienced bufferThe computational graph and training loop; Results; DQN variations; Double DQN; DDQN implementation; Results; Dueling DQN; Dueling DQN implementation; Results; N-step DQN; Implementation; Results; Summary; Questions; Further reading; Chapter 6: Learning Stochastic and PG Optimization; Policy gradient methods; The gradient of the policy; Policy gradient theorem; Computing the gradient; The policy; On-policy PG; Understanding the REINFORCE algorithm; Implementing REINFORCE; Landing a spacecraft using REINFORCE; Analyzing the results; REINFORCE with baseline 
500 |a Implementing REINFORCE with baseline 
520 |a With this book, you will understand the core concepts and techniques of reinforcement learning. You will take a look into each RL algorithm and will develop your own self-learning algorithms and models. You will optimize the algorithms for better precision, use high-speed actions and lower the risk of anomalies in your applications. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Computer algorithms. 
650 0 |a Python (Computer program language) 
650 2 |a Algorithms 
650 6 |a Algorithmes. 
650 6 |a Python (Langage de programmation) 
650 7 |a algorithms.  |2 aat 
650 7 |a Computer algorithms.  |2 fast  |0 (OCoLC)fst00872010 
650 7 |a Python (Computer program language)  |2 fast  |0 (OCoLC)fst01084736 
776 0 8 |i Print version:  |a Lonza, Andrea.  |t Reinforcement Learning Algorithms with Python : Learn, Understand, and Develop Smart Algorithms for Addressing AI Challenges.  |d Birmingham : Packt Publishing, Limited, ©2019  |z 9781789131116 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2278656  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH36843042 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5964771 
938 |a EBSCOhost  |b EBSC  |n 2278656 
994 |a 92  |b IZTAP