Cargando…

Design of digital phase shifters for multipurpose communication systems /

Design of Digital Phase Shifters for Multipurpose Communication Systems aims to cover a new emerging need in designing digital phase shifters for modern communication systems. With the advancement of new generation mobile communication systems, directed beams save a substantial amount of RF-power, a...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Yarman, Binboga Siddik
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Denmark : River Publishers, [2019]
Colección:River Publishers series in communications.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Preface xi Acknowledgments xv
  • List of Figures xvii
  • List of Tables xxv
  • List of Abbreviations xxvii
  • 1 Fundamentals of Digital Phase Shifters 1
  • 1.1 Introduction 1
  • 1.2 Concept of Digital Phase Shift 3
  • 1.3 Digital Phase Bits 4
  • 1.4 n-Bit Phase Shifter 5
  • 1.5 Phase Error 9
  • 1.6 Practical Issues 12
  • 1.7 Types of Digital Phase Shifters 12
  • References 17
  • 2 Scattering Parameters for Lossless Two-Ports 19
  • 2.1 Introduction 19
  • 2.2 Formal Definition of Scattering Parameters 20
  • 2.3 Generation of Scattering Parameters for Linear Two-Ports 34
  • 2.4 Transducer Power Gain in Forward and Backward Directions 37
  • 2.5 Properties of the Scattering Parameters of Lossless Two-Ports 38
  • 2.6 Blashke Products or All Pass Functions 45
  • 2.7 Possible Zeros of a Proper Polynomial f(p) 45
  • 2.8 Transmission Zeros 48
  • 2.9 Lossless Ladders 53
  • 2.10 Further Properties of the Scattering Parameters of the Lossless Two-Ports 55
  • 2.11 Transfer Scattering Parameters 56
  • 2.12 Cascaded (or Tandem) Connections of Two-ports 57
  • 2.13 Construction of an n-Bit Phase Shifter by Cascading Phase-Shifting Cells 59
  • 3 Transmission Lines as Phase Shifter 63
  • 3.1 Ideal Transmission Lines 63
  • 3.2 Time Domain Solutions of Voltage and Current Wave Equations 68
  • 3.3 Model for a Two-Pair Wire Transmission Line as an Ideal TEM Line 69
  • 3.4 Model for a Coaxial Cable as an Ideal TEM Line 69
  • 3.5 Field Solutions for TEM Lines 70
  • 3.6 Phasor Solutions for Ideal TEM Lines 70
  • 3.7 Steady-State Time Domain Solutions for Voltage and Current at any Point z on the TEM Line 72
  • 3.8 Definition of the Major Parameters of a Transmission Line 72
  • 3.9 Voltage and Current Expression in Terms of Incident and Reflected Waves 74
  • 3.10 Reflection Coefficient S 74
  • 3.11 TEM Lines as Circuit or "Distributed" Elements 74
  • 3.12 Voltage and Current Expressions at the Load End; Load Reflection Coefficient on the z = 0 Plane 75
  • 3.13 Voltage and Current Expressions at the Source-End; Input Reflection Coefficient on the z =]]>?<![CDATA[L Plane 76.
  • 9.10 Analysis of the Phase Shifting Performance of 3S-DPS 353
  • 9.11 Performance Measure of Digital Phase Shifters 356
  • 9.12 Investigation of Unequal Phase Distributions between the States 364
  • 9.13 Practical Lossy Design of a 3D-DPS 371
  • 9.14 Investigation of Unequal Phase Distribution between the States with Negative Phases: An Alternative Approach 393
  • 9.15 On-Chip Inductor Design 405
  • References 433
  • 10
  • 360À T-Section Digital Phase Shifter 435
  • 10.1 Derivation of Design Equations for a 360À T-Section Digital Phase Shifter 435
  • 10.2 Algorithm to Design 360À T-Section Digital Phase Shifter 439
  • 10.3 Unequal Distribution of Distribution of the Phase Shift between the States 445
  • 10.4 Analysis of the Phase Performance of the 360À T-Section DPS Topology with Lossy Components 446
  • 10.5 Algorithm: Design of a Lossy 360À T-Section DPS 449
  • 10.6 Physical Implementation of 360À T-DPS 454
  • References 461
  • 11
  • 360À PI-Section Digital Phase Shifter 463
  • 11.1 Algorithm to design 360À PI-Section Digital Phase Shifter 467
  • 11.2 Unequal Distribution of the Phase Shifts between the States 472
  • 11.3 Analysis of the Phase Performance of the 360À PI-Section DPS Topology with Lossy Components 473
  • 11.4 Algorithm: Design of a Lossy 360À PI-Section DPS 476
  • 11.5 Physical Implementation of 360À PI-DPS 484
  • References 492
  • 12
  • 180À High-pass-based PI-Section Digital Phase Shifter 493
  • 12.1 Derivation of Design Equations for a 180À PI-Section Digital Phase Shifter 493
  • 12.2 Algorithm to Design 180À PI-Section Digital Phase Shifter 496
  • 12.3 Analysis of the Phase Performance of the 360À PI-Section DPS Topology with lossy components 501
  • 12.4 Algorithm: Design of a Lossy 180À HPI Section DPS 503
  • 12.5 Physical Implementation of 180À HPI-DPS 509
  • References 514
  • Index 517
  • About the Author 525.