|
|
|
|
LEADER |
00000cam a2200000Mi 4500 |
001 |
EBSCO_on1110489067 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr |n|---||||| |
008 |
190810s2019 enk o 000 0 eng d |
040 |
|
|
|a EBLCP
|b eng
|e pn
|c EBLCP
|d OCLCQ
|d UKMGB
|d OCLCO
|d EBLCP
|d OCLCF
|d TEFOD
|d YDX
|d UKAHL
|d OCLCQ
|d N$T
|d OCLCO
|d K6U
|d OCLCQ
|d OCLCO
|
015 |
|
|
|a GBB9D1843
|2 bnb
|
016 |
7 |
|
|a 019485037
|2 Uk
|
019 |
|
|
|a 1110483785
|
020 |
|
|
|a 1838552162
|
020 |
|
|
|a 9781838552169
|q (electronic bk.)
|
020 |
|
|
|z 9781838552862
|q (pbk.)
|
029 |
1 |
|
|a AU@
|b 000066231454
|
029 |
1 |
|
|a CHNEW
|b 001063805
|
029 |
1 |
|
|a CHVBK
|b 575143754
|
029 |
1 |
|
|a UKMGB
|b 019485037
|
029 |
1 |
|
|a AU@
|b 000069031111
|
035 |
|
|
|a (OCoLC)1110489067
|z (OCoLC)1110483785
|
037 |
|
|
|a 9781838552169
|b Packt Publishing
|
037 |
|
|
|a C04D34EC-FFE7-4802-96A6-220761C8F179
|b OverDrive, Inc.
|n http://www.overdrive.com
|
050 |
|
4 |
|a QA76.9.D343
|
082 |
0 |
4 |
|a 006.31
|2 23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Chopra, Rohan.
|
245 |
1 |
0 |
|a Data Science with Python :
|b Combine Python with Machine Learning Principles to Discover Hidden Patterns in Raw Data.
|
260 |
|
|
|a Birmingham :
|b Packt Publishing, Limited,
|c 2019.
|
300 |
|
|
|a 1 online resource (426 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Cover; FM; Copyright; Table of Contents; Preface; Chapter 1: Introduction to Data Science and Data Pre-Processing; Introduction; Python Libraries; Roadmap for Building Machine Learning Models; Data Representation; Independent and Target Variables; Exercise 1: Loading a Sample Dataset and Creating the Feature Matrix and Target Matrix; Data Cleaning; Exercise 2: Removing Missing Data; Exercise 3: Imputing Missing Data; Exercise 4: Finding and Removing Outliers in Data; Data Integration; Exercise 5: Integrating Data; Data Transformation; Handling Categorical Data
|
505 |
8 |
|
|a Exercise 6: Simple Replacement of Categorical Data with a NumberExercise 7: Converting Categorical Data to Numerical Data Using Label Encoding; Exercise 8: Converting Categorical Data to Numerical Data Using One-Hot Encoding; Data in Different Scales; Exercise 9: Implementing Scaling Using the Standard Scaler Method; Exercise 10: Implementing Scaling Using the MinMax Scaler Method; Data Discretization; Exercise 11: Discretization of Continuous Data; Train and Test Data; Exercise 12: Splitting Data into Train and Test Sets
|
505 |
8 |
|
|a Activity 1: Pre-Processing Using the Bank Marketing Subscription DatasetSupervised Learning; Unsupervised Learning; Reinforcement Learning; Performance Metrics; Summary; Chapter 2: Data Visualization; Introduction; Functional Approach; Exercise 13: Functional Approach -- Line Plot; Exercise 14: Functional Approach -- Add a Second Line to the Line Plot; Activity 2: Line Plot; Exercise 15: Creating a Bar Plot; Activity 3: Bar Plot; Exercise 16: Functional Approach -- Histogram; Exercise 17: Functional Approach -- Box-and-Whisker plot; Exercise 18: Scatterplot
|
505 |
8 |
|
|a Object-Oriented Approach Using SubplotsExercise 19: Single Line Plot using Subplots; Exercise 20: Multiple Line Plots Using Subplots; Activity 4: Multiple Plot Types Using Subplots; Summary; Chapter 3: Introduction to Machine Learning via Scikit-Learn; Introduction; Introduction to Linear and Logistic Regression; Simple Linear Regression; Exercise 21: Preparing Data for a Linear Regression Model; Exercise 22: Fitting a Simple Linear Regression Model and Determining the Intercept and Coefficient
|
505 |
8 |
|
|a Exercise 23: Generating Predictions and Evaluating the Performance of a Simple Linear Regression ModelMultiple Linear Regression; Exercise 24: Fitting a Multiple Linear Regression Model and Determining the Intercept and Coefficients; Activity 5: Generating Predictions and Evaluating the Performance of a Multiple Linear Regression Model; Logistic Regression; Exercise 25: Fitting a Logistic Regression Model and Determining the Intercept and Coefficients; Exercise 26: Generating Predictions and Evaluating the Performance of a Logistic Regression Model
|
500 |
|
|
|a Exercise 27: Tuning the Hyperparameters of a Multiple Logistic Regression Model
|
520 |
|
|
|a Data Science with Python will help you get comfortable with using the Python environment for data science. You will learn all the libraries that a data scientist uses on a daily basis. By the end of this course, you will be able to take a large raw dataset, clean it, manipulate it, and run machine learning algorithms to obtain results that ...
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a Machine learning.
|
650 |
|
0 |
|a Data mining.
|
650 |
|
0 |
|a Python (Computer program language)
|
650 |
|
6 |
|a Apprentissage automatique.
|
650 |
|
6 |
|a Exploration de données (Informatique)
|
650 |
|
6 |
|a Python (Langage de programmation)
|
650 |
|
7 |
|a Data mining
|2 fast
|
650 |
|
7 |
|a Machine learning
|2 fast
|
650 |
|
7 |
|a Python (Computer program language)
|2 fast
|
700 |
1 |
|
|a England, Aaron.
|
700 |
1 |
|
|a Alaudeen, Mohamed Noordeen.
|
776 |
0 |
8 |
|i Print version:
|a Chopra, Rohan.
|t Data Science with Python : Combine Python with Machine Learning Principles to Discover Hidden Patterns in Raw Data.
|d Birmingham : Packt Publishing, Limited, ©2019
|z 9781838552862
|
856 |
4 |
0 |
|u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2204654
|z Texto completo
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n BDZ0040275734
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL5837323
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 300727348
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 2204654
|
994 |
|
|
|a 92
|b IZTAP
|