Leibniz and the Invention of Mathematical Transcendence
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Stuttgart :
Franz Steiner Verlag,
2018.
|
Colección: | Studia Leibnitiana. Sonderheft ;
53. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Intro; TABLE OF CONTENTS; LEIBNIZ AND THE INVENTION OF MATHEMATICAL TRANSCENDENCE. THE ADVENTURES OF AN IMPOSSIBLE INVENTORY; THE DISCOVERY OF THE TRANSCENDENCE; TRANSCENDENCE AND SYMBOLISM; TRANSCENDENCE AND GEOMETRY; LOOKING FOR AN INVENTORY; SYMBOLICAL INVENTORY?; GEOMETRICAL INVENTORY?; ON HIERARCHIES IN TRANSCENDENCE. EXPLORATIONS BY REPRODUCTION; RECEPTIONS OF THE TRANSCENDENCE; FIRST PART. DISCOVERING TRANSCENDENCE; CHAPTER I. ON THE GERMINATIONS OF THE CONCEPT OF 'TRANSCENDENCE'; 1673: "A TRANSCENDENT CURVE SQUARING THE CIRCLE ... "; 1674: ABOUT 'SECRET' GEOMETRY
- 1675: THE LETTER TO OLDENBURG1678: THE "PERFECTION OF TRANSCENDENT CALCULUS"; CHAPTER II. SQUARING THE CIRCLE; II-A THE ARITHMETICAL QUADRATURE OF THE CIRCLE (1673), OR THE VERY FIRST MATHEMATICAL GLORY OF LEIBNIZ; The quadrature of the hyperbola in Mercator; Quadratrices and symbolic substitutions: the mathematical ideas of Leibniz; Leibniz on "the exact proportion ... "; Some reflections on the integration of rational fractions; II-B LEIBNIZ AND THE IMPOSSIBILITY OF THE ANALYTICAL QUADRATURE OF THE CIRCLE OF GREGORY; The true quadrature of the circle and hyperbola, by James Gregory
- The geometric-harmonic mean of GregoryLeibniz and the "convergence" of adjacent sequences (1676); Leibniz's "means by composition"; A mathematical appendix: the geometric-harmonic mean (G-H); CHAPTER III THE POWER OF SYMBOLISM: EXPONENTIALS WITH LETTERS; III-A EPISTOLA PRIOR, OR LEIBNIZ'S DISCOVERY OF SYMBOLIC FORMS WITHOUT A SUBSTANCE (JUNE 1676); Fractional exponents; Symbolism without interpretation?; On the consistency of Newton's exponential; 'Permanence-Ramification'. A scheme; III-B THE EPISTOLA POSTERIOR (OCTOBER 1676); Irrational Exponents; Letters in Exponents
- III-C DESCARTES, LEIBNIZ AND THE IDEALIZED IMAGE OF THE EXPONENTIALGradus indefinitus; Descartes and Newton transcended by Leibniz; CONCLUSION OF THE FIRST PART: THE TRANSCENDENT IDENTIFIED WITH THE NON-CARTESIAN FIELD; SECOND PART. THE SEARCH FOR AN INVENTORY; CHAPTER IV FROM INFINITELY SMALL ELEMENTS TO THE EXPONENTIAL UTOPIA; IV-A TSCHIRNHAUS AND THE INVENTORIES OF 1679-1684; IV-B DE BEAUNE, DESCARTES, LEIBNIZ, AND THE INFINITELY SMALL ELEMENTS; When a curve is no longer considered as "a set of points" (in modern terminology); Descartes and De Beaune's problem
- Leibniz and De Beaune's problemIV-C ON EXPONENTIAL SYMBOLISMS; IV-C1 ON THE RESOLUTION OF THE EXPONENTIAL EQUATIONS. THE "ADMIRABLE EXAMPLE"; The admirable example; The impossibility of effective resolutions; IV-C2 EXPONENTIAL EXPRESSIONS AND THE DIALECTICS OF INDETERMINACY
- THE STATUS OF THE LETTER; The symbolism of quantities "arbitrary, but however fixed"; When the unknown enters the exponent; Towards letteralized exponentials; IV-C3 TOWARDS A HIERARCHY IN TRANSCENDENCE: THE INTERSCENDENT EXPONENTIALS; When the degree of the exponential "falls between" two integers