Cargando…

Machine learning for finance : the practical guide to using data-driven algorithms in banking, insurance, and investments /

Machine Learning for Finance shows you how to build machine learning models for use in financial services organizations. It shows you how to work with all the key machine learning models, from simple regression to advanced neural networks. You will use machine learning to automate manual tasks, addr...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Klaas, Jannes (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham : Packt Publishing, Limited, 2019.
Colección:Expert insight
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBSCO_on1104090020
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 190622s2019 enk o 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d TEFOD  |d OCLCF  |d TEFOD  |d UKMGB  |d N$T  |d OCLCQ  |d OCLCO  |d OL$  |d NZAUC  |d OCLCQ  |d OCLCO 
015 |a GBB9C8634  |2 bnb 
016 7 |a 019436486  |2 Uk 
020 |a 1789134692 
020 |a 9781789134698  |q (electronic bk.) 
029 1 |a AU@  |b 000066231691 
029 1 |a UKMGB  |b 019436486 
029 1 |a AU@  |b 000069032956 
029 1 |a AU@  |b 000065674184 
035 |a (OCoLC)1104090020 
037 |a BFFABF80-02D6-4296-8D76-11B73E2802CC  |b OverDrive, Inc.  |n http://www.overdrive.com 
050 4 |a HG4012.5 
082 0 4 |a 332.0285631  |2 23 
049 |a UAMI 
100 1 |a Klaas, Jannes,  |e author. 
245 1 0 |a Machine learning for finance :  |b the practical guide to using data-driven algorithms in banking, insurance, and investments /  |c Jannes Klaas. 
260 |a Birmingham :  |b Packt Publishing, Limited,  |c 2019. 
300 |a 1 online resource (457 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 0 |a Expert insight 
505 0 |a Cover; Copyright; Mapt upsell; Contributors; Table of Contents; Preface; Chapter 1: Neural Networks and Gradient-Based Optimization; Our journey in this book; What is machine learning?; Supervised learning; Unsupervised learning; Reinforcement learning; The unreasonable effectiveness of data; All models are wrong; Setting up your workspace; Using Kaggle kernels; Running notebooks locally; Installing TensorFlow; Installing Keras; Using data locally; Using the AWS deep learning AMI; Approximating functions; A forward pass; A logistic regressor; Python version of our logistic regressor 
505 8 |a Optimizing model parametersMeasuring model loss; Gradient descent; Backpropagation; Parameter updates; Putting it all together; A deeper network; A brief introduction to Keras; Importing Keras; A two-layer model in Keras; Stacking layers; Compiling the model; Training the model; Keras and TensorFlow; Tensors and the computational graph; Exercises; Summary; Chapter 2: Applying Machine Learning to Structured Data; The data; Heuristic, feature-based, and E2E models; The machine learning software stack; The heuristic approach; Making predictions using the heuristic model; The F1 score 
505 8 |a Evaluating with a confusion matrixThe feature engineering approach; A feature from intuition -- fraudsters don't sleep; Expert insight -- transfer, then cash out; Statistical quirks -- errors in balances; Preparing the data for the Keras library; One-hot encoding; Entity embeddings; Tokenizing categories; Creating input models; Training the model; Creating predictive models with Keras; Extracting the target; Creating a test set; Creating a validation set; Oversampling the training data; Building the model; Creating a simple baseline; Building more complex models 
505 8 |a A brief primer on tree-based methodsA simple decision tree; A random forest; XGBoost; E2E modeling; Exercises; Summary; Chapter 3: Utilizing Computer Vision; Convolutional Neural Networks; Filters on MNIST; Adding a second filter; Filters on color images; The building blocks of ConvNets in Keras; Conv2D; Kernel size; Stride size; Padding; Input shape; Simplified Conv2D notation; ReLU activation; MaxPooling2D; Flatten; Dense; Training MNIST; The model; Loading the data; Compiling and training; More bells and whistles for our neural network; Momentum; The Adam optimizer; Regularization 
505 8 |a L2 regularizationL1 regularization; Regularization in Keras; Dropout; Batchnorm; Working with big image datasets; Working with pretrained models; Modifying VGG-16; Random image augmentation; Augmentation with ImageDataGenerator; The modularity tradeoff; Computer vision beyond classification; Facial recognition; Bounding box prediction; Exercises; Summary; Chapter 4: Understanding Time Series; Visualization and preparation in pandas; Aggregate global feature statistics; Examining the sample time series; Different kinds of stationarity; Why stationarity matters; Making a time series stationary; When to ignore stationarity issues. 
520 |a Machine Learning for Finance shows you how to build machine learning models for use in financial services organizations. It shows you how to work with all the key machine learning models, from simple regression to advanced neural networks. You will use machine learning to automate manual tasks, address systematic bias, and find new insights ... 
588 0 |a Print version record. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Finance  |x Data processing. 
650 0 |a Finance  |x Mathematical models. 
650 0 |a Machine learning. 
650 6 |a Finances  |x Informatique. 
650 6 |a Finances  |x Modèles mathématiques. 
650 6 |a Apprentissage automatique. 
650 7 |a Finance  |x Data processing  |2 fast 
650 7 |a Finance  |x Mathematical models  |2 fast 
650 7 |a Machine learning  |2 fast 
776 0 8 |i Print version:  |a Klaas, Jannes.  |t Machine Learning for Finance : The Practical Guide to Using Data-Driven Algorithms in Banking, Insurance, and Investments.  |d Birmingham : Packt Publishing, Limited, ©2019  |z 9781789136364 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2149485  |z Texto completo 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5783098 
938 |a EBSCOhost  |b EBSC  |n 2149485 
994 |a 92  |b IZTAP