Cargando…

Machine Learning with Go Quick Start Guide : Hands-On Techniques for Building Supervised and Unsupervised Machine Learning Workflows.

Machine learning has become an essential part of the modern data-driven world and has been extensively adopted in various fields across financial forecasting, effective searches, robotics, digital imaging in healthcare, and more. This book will teach you to perform various machine learning tasks usi...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Bironneau, Michael
Otros Autores: Coleman, Toby
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham : Packt Publishing, Limited, 2019.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBSCO_on1104083869
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 190622s2019 enk o 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d TEFOD  |d EBLCP  |d TEFOD  |d OCLCO  |d OCLCF  |d OCLCQ  |d YDX  |d UKAHL  |d OCLCQ  |d N$T  |d OCLCQ  |d NLW  |d UKMGB  |d OCLCO  |d NZAUC  |d OCLCQ  |d OCLCO 
015 |a GBC225854  |2 bnb 
016 7 |a 019436496  |2 Uk 
019 |a 1104044646 
020 |a 1838551654 
020 |a 9781838551650  |q (electronic bk.) 
020 |z 9781838550356  |q print 
029 1 |a UKMGB  |b 019436496 
035 |a (OCoLC)1104083869  |z (OCoLC)1104044646 
037 |a 52BEB9EE-F937-4569-869A-F71B89AC0092  |b OverDrive, Inc.  |n http://www.overdrive.com 
050 4 |a QA76.73.G63 
082 0 4 |a 005.133  |2 23 
049 |a UAMI 
100 1 |a Bironneau, Michael. 
245 1 0 |a Machine Learning with Go Quick Start Guide :  |b Hands-On Techniques for Building Supervised and Unsupervised Machine Learning Workflows. 
260 |a Birmingham :  |b Packt Publishing, Limited,  |c 2019. 
300 |a 1 online resource (159 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
505 0 |a Cover; Title Page; Copyright and Credits; About Packt; Contributors; Table of Contents; Preface; Chapter 1: Introducing Machine Learning with Go; What is ML?; Types of ML algorithms; Supervised learning problems; Unsupervised learning problems; Why write ML applications in Go?; The advantages of Go; Go's mature ecosystem; Transfer knowledge and models created in other languages; ML development life cycle; Defining problem and objectives; Acquiring and exploring data; Selecting the algorithm; Preparing data; Training; Validating/testing; Integrating and deploying; Re-validating; Summary 
505 8 |a Further readingsChapter 2: Setting Up the Development Environment; Installing Go; Linux, macOS, and FreeBSD; Windows; Running Go interactively with gophernotes; Example -- the most common phrases in positive and negative reviews; Initializing the example directory and downloading the dataset; Loading the dataset files; Parsing contents into a Struct; Loading the data into a Gota dataframe; Finding the most common phrases; Example -- exploring body mass index data with gonum/plot; Installing gonum and gonum/plot; Loading the data; Understanding the distributions of the data series 
505 8 |a Example -- preprocessing data with GotaLoading the data into Gota; Removing and renaming columns; Converting a column into a different type; Filtering out unwanted data; Normalizing the Height, Weight, and Age columns; Sampling to obtain training/validation subsets; Encoding data with categorical variables; Summary; Further readings; Chapter 3: Supervised Learning; Classification; A simple model -- the logistic classifier; Measuring performance; Precision and recall; ROC curves; Multi-class models; A non-linear model -- the support vector machine; Overfitting and underfitting; Deep learning 
505 8 |a Neural networksA simple deep learning model architecture; Neural network training; Regression; Linear regression; Random forest regression; Other regression models; Summary; Further readings; Chapter 4: Unsupervised Learning; Clustering; Principal component analysis; Summary; Further readings; Chapter 5: Using Pretrained Models; How to restore a saved GoML model; Deciding when to adopt a polyglot approach; Example -- invoking a Python model using os/exec; Example -- invoking a Python model using HTTP; Example -- deep learning using the TensorFlow API for Go; Installing TensorFlow 
505 8 |a Import the pretrained TensorFlow modelCreating inputs to the TensorFlow model; Summary; Further readings; Chapter 6: Deploying Machine Learning Applications; The continuous delivery feedback loop; Developing; Testing; Deployment; Dependencies; Model persistence; Monitoring; Structured logging; Capturing metrics; Feedback; Deployment models for ML applications; Infrastructure-as-a-service; Amazon Web Services; Microsoft Azure; Google Cloud; Platform-as-a-Service; Amazon Web Services; Amazon Sagemaker; Amazon AI Services; Microsoft Azure; Azure ML Studio; Azure Cognitive Services; Google Cloud; AI Platform. 
520 |a Machine learning has become an essential part of the modern data-driven world and has been extensively adopted in various fields across financial forecasting, effective searches, robotics, digital imaging in healthcare, and more. This book will teach you to perform various machine learning tasks using Go in different environments. 
588 0 |a Print version record. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Go (Computer program language) 
650 0 |a Machine learning. 
650 0 |a Big data. 
650 6 |a Go (Langage de programmation) 
650 6 |a Apprentissage automatique. 
650 6 |a Données volumineuses. 
650 7 |a Artificial intelligence.  |2 bicssc 
650 7 |a Neural networks & fuzzy systems.  |2 bicssc 
650 7 |a Information architecture.  |2 bicssc 
650 7 |a Database design & theory.  |2 bicssc 
650 7 |a Computers  |x Intelligence (AI) & Semantics.  |2 bisacsh 
650 7 |a Computers  |x Neural Networks.  |2 bisacsh 
650 7 |a Computers  |x Data Modeling & Design.  |2 bisacsh 
650 7 |a Big data  |2 fast 
650 7 |a Go (Computer program language)  |2 fast 
650 7 |a Machine learning  |2 fast 
700 1 |a Coleman, Toby. 
776 0 8 |i Print version:  |a Bironneau, Michael.  |t Machine Learning with Go Quick Start Guide : Hands-On Techniques for Building Supervised and Unsupervised Machine Learning Workflows.  |d Birmingham : Packt Publishing, Limited, ©2019  |z 9781838550356 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2153724  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH36368508 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5784238 
938 |a EBSCOhost  |b EBSC  |n 2153724 
938 |a YBP Library Services  |b YANK  |n 300576900 
994 |a 92  |b IZTAP