Cargando…

Hands-on deep learning for games : leverage the power of neural networks and reinforcement learning to build intelligent games /

This book will give you an in-depth view of the potential of deep learning and neural networks in game development. You will also learn to use neural nets combined with reinforcement learning for new types of game AI.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Lanham, Micheal (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham, UK : Packt Publishing, 2019.
Temas:
Acceso en línea:Texto completo
Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBSCO_on1101443842
003 OCoLC
005 20231017213018.0
006 m o d
007 cr unu||||||||
008 190516s2019 enka o 000 0 eng d
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d TEFOD  |d EBLCP  |d UKAHL  |d MERUC  |d UKMGB  |d N$T  |d OCLCF  |d YDX  |d OCLCQ  |d NJT  |d OCLCQ  |d OCLCO  |d NZAUC  |d OCLCQ  |d OCL 
015 |a GBB995001  |2 bnb 
016 7 |a 019365453  |2 Uk 
019 |a 1091657369  |a 1096532822 
020 |a 1788998766 
020 |a 9781788998765  |q (electronic bk.) 
020 |z 9781788994071 
029 1 |a AU@  |b 000066230921 
029 1 |a CHNEW  |b 001053178 
029 1 |a CHVBK  |b 567698602 
029 1 |a UKMGB  |b 019365453 
029 1 |a AU@  |b 000065333082 
035 |a (OCoLC)1101443842  |z (OCoLC)1091657369  |z (OCoLC)1096532822 
037 |a CL0501000048  |b Safari Books Online 
050 4 |a Q325.6 
072 7 |a COM  |x 000000  |2 bisacsh 
082 0 4 |a 006.31  |2 23 
049 |a UAMI 
100 1 |a Lanham, Micheal,  |e author. 
245 1 0 |a Hands-on deep learning for games :  |b leverage the power of neural networks and reinforcement learning to build intelligent games /  |c Micheal Lanham. 
264 1 |a Birmingham, UK :  |b Packt Publishing,  |c 2019. 
300 |a 1 online resource :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Online resource; title from title page (Safari, viewed May 14, 2019). 
505 0 |a Cover; Title Page; Copyright and Credits; Dedication; About Packt; Contributors; Table of Contents; Preface; Section 1: The Basics; Chapter 1: Deep Learning for Games; The past, present, and future of DL; The past; The present; The future; Neural networks -- the foundation; Training a perceptron in Python; Multilayer perceptron in TF; TensorFlow Basics; Training neural networks with backpropagation; The Cost function; Partial differentiation and the chain rule; Building an autoencoder with Keras; Training the model; Examining the output; Exercises; Summary 
505 8 |a Chapter 2: Convolutional and Recurrent NetworksConvolutional neural networks; Monitoring training with TensorBoard; Understanding convolution; Building a self-driving CNN; Spatial convolution and pooling; The need for Dropout; Memory and recurrent networks; Vanishing and exploding gradients rescued by LSTM; Playing Rock, Paper, Scissors with LSTMs; Exercises; Summary; Chapter 3: GAN for Games; Introducing GANs; Coding a GAN in Keras; Training a GAN; Optimizers; Wasserstein GAN; Generating textures with a GAN ; Batch normalization; Leaky and other ReLUs; A GAN for creating music 
505 8 |a Training the music GANGenerating music via an alternative GAN; Exercises; Summary ; Chapter 4: Building a Deep Learning Gaming Chatbot; Neural conversational agents; General conversational models; Sequence-to-sequence learning; Breaking down the code; Thought vectors; DeepPavlov; Building the chatbot server; Message hubs (RabbitMQ); Managing RabbitMQ; Sending and receiving to/from the MQ; Writing the message queue chatbot; Running the chatbot in Unity; Installing AMQP for Unity; Exercises; Summary; Section 2: Deep Reinforcement Learning; Chapter 5: Introducing DRL; Reinforcement learning 
505 8 |a The multi-armed banditContextual bandits; RL with the OpenAI Gym; A Q-Learning model; Markov decision process and the Bellman equation; Q-learning; Q-learning and exploration; First DRL with Deep Q-learning; RL experiments; Keras RL; Exercises; Summary; Chapter 6: Unity ML-Agents; Installing ML-Agents; Training an agent; What's in a brain?; Monitoring training with TensorBoard; Running an agent; Loading a trained brain; Exercises; Summary; Chapter 7: Agent and the Environment; Exploring the training environment; Training the agent visually; Reverting to the basics; Understanding state 
505 8 |a Understanding visual stateConvolution and visual state; To pool or not to pool; Recurrent networks for remembering series; Tuning recurrent hyperparameters; Exercises; Summary; Chapter 8: Understanding PPO; Marathon RL; The partially observable Markov decision process; Actor-Critic and continuous action spaces; Expanding network architecture; Understanding TRPO and PPO; Generalized advantage estimate; Learning to tune PPO ; Coding changes required for control projects; Multiple agent policy; Exercises ; Summary; Chapter 9: Rewards and Reinforcement Learning; Rewards and reward functions 
520 |a This book will give you an in-depth view of the potential of deep learning and neural networks in game development. You will also learn to use neural nets combined with reinforcement learning for new types of game AI. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Reinforcement learning. 
650 0 |a Machine learning. 
650 0 |a Computer games  |x Programming. 
650 0 |a Neural networks (Computer science) 
650 0 |a Application software  |x Development. 
650 2 |a Neural Networks, Computer 
650 6 |a Apprentissage par renforcement (Intelligence artificielle) 
650 6 |a Apprentissage automatique. 
650 6 |a Jeux d'ordinateur  |x Programmation. 
650 6 |a Réseaux neuronaux (Informatique) 
650 6 |a Logiciels d'application  |x Développement. 
650 7 |a COMPUTERS  |x General.  |2 bisacsh 
650 7 |a Application software  |x Development.  |2 fast  |0 (OCoLC)fst00811707 
650 7 |a Video games  |x Programming.  |2 fast  |0 (OCoLC)fst00872114 
650 7 |a Machine learning.  |2 fast  |0 (OCoLC)fst01004795 
650 7 |a Neural networks (Computer science)  |2 fast  |0 (OCoLC)fst01036260 
650 7 |a Reinforcement learning.  |2 fast  |0 (OCoLC)fst01732553 
776 0 8 |i Print version:  |a Lanham, Micheal.  |t Hands-On Deep Learning for Games : Leverage the Power of Neural Networks and Reinforcement Learning to Build Intelligent Games.  |d Birmingham : Packt Publishing Ltd, ©2019  |z 9781788994071 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2094775  |z Texto completo 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781788994071/?ar  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH36147860 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5744448 
938 |a EBSCOhost  |b EBSC  |n 2094775 
938 |a YBP Library Services  |b YANK  |n 16142461 
994 |a 92  |b IZTAP