Cargando…

PyTorch Deep Learning Hands-On : Apply Modern AI Techniques with CNNs, RNNs, GANs, Reinforcement Learning, and More /

Implement every major architecture of deep learning in PyTorch. Starting with simple neural networks, it covers PyTorch for computer vision (CNN), natural language (RNN), GANs, and reinforcement learning. It covers deep learning workflows, migrating models to TorchScript, and deploying to efficient...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Thomas, Sherin
Otros Autores: Passi, Sudhanshu
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham : Packt Publishing, Limited, [2019]
Colección:Expert insight.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBSCO_on1101043781
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 190518s2019 enk o 000 0 eng d
040 |a EBLCP  |b eng  |e rda  |e pn  |c EBLCP  |d UKAHL  |d N$T  |d MERUC  |d OCLCF  |d YDXIT  |d UKMGB  |d YDX  |d OCLCQ  |d OCLCO  |d OCLCQ 
015 |a GBB9C8587  |2 bnb 
016 7 |a 019397880  |2 Uk 
019 |a 1100449808 
020 |a 1788833430  |q (electronic book) 
020 |a 9781788833431  |q (electronic book) 
029 1 |a CHNEW  |b 001058798 
029 1 |a CHVBK  |b 569754011 
029 1 |a UKMGB  |b 019397880 
035 |a (OCoLC)1101043781  |z (OCoLC)1100449808 
037 |a 9781788833431  |b Packt Publishing 
050 4 |a QA76.73.P98  |b P98 2019 
072 7 |a COM  |x 000000  |2 bisacsh 
082 0 4 |a 005.133  |2 23 
049 |a UAMI 
100 1 |a Thomas, Sherin. 
245 1 0 |a PyTorch Deep Learning Hands-On :  |b Apply Modern AI Techniques with CNNs, RNNs, GANs, Reinforcement Learning, and More /  |c Sherin Thomas with Sudhanshu Passi. 
264 1 |a Birmingham :  |b Packt Publishing, Limited,  |c [2019] 
300 |a 1 online resource (251 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Expert insight 
588 0 |a Print version record. 
520 |a Implement every major architecture of deep learning in PyTorch. Starting with simple neural networks, it covers PyTorch for computer vision (CNN), natural language (RNN), GANs, and reinforcement learning. It covers deep learning workflows, migrating models to TorchScript, and deploying to efficient production environments. 
588 0 |a Online resource; title from digital title page (viewed on July 19, 2019). 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Python (Computer program language) 
650 0 |a Machine learning. 
650 0 |a Neural networks (Computer science) 
650 2 |a Neural Networks, Computer 
650 6 |a Python (Langage de programmation) 
650 6 |a Apprentissage automatique. 
650 6 |a Réseaux neuronaux (Informatique) 
650 7 |a COMPUTER SCIENCE  |x General.  |2 bisacsh 
650 7 |a Machine learning.  |2 fast  |0 (OCoLC)fst01004795 
650 7 |a Neural networks (Computer science)  |2 fast  |0 (OCoLC)fst01036260 
650 7 |a Python (Computer program language)  |2 fast  |0 (OCoLC)fst01084736 
700 1 |a Passi, Sudhanshu. 
776 0 8 |i Print version:  |a Thomas, Sherin.  |t PyTorch Deep Learning Hands-On : Apply Modern AI Techniques with CNNs, RNNs, GANs, Reinforcement Learning, and More.  |d Birmingham : Packt Publishing, Limited, ©2019  |z 9781788834131 
830 0 |a Expert insight. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2116433  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH36227380 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5764289 
938 |a EBSCOhost  |b EBSC  |n 2116433 
938 |a YBP Library Services  |b YANK  |n 300507962 
994 |a 92  |b IZTAP