Cargando…

Hands-On Generative Adversarial Networks with Keras : Your Guide to Implementing Next-Generation Generative Adversarial Networks.

This book will explore deep learning and generative models, and their applications in artificial intelligence. You will learn to evaluate and improve your GAN models by eliminating challenges that are encountered in real-world applications. You will implement GAN architectures in various domains suc...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Valle, Rafael, 1985- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham : Packt, 2019.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBSCO_on1101033581
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |n|---|||||
008 190511s2019 enk o 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d OCLCQ  |d YDX  |d N$T  |d UKAHL  |d N$T  |d OCLCF  |d OCLCQ  |d NLW  |d OCLCO  |d OCLCQ  |d OCLCO  |d K6U  |d OCLCQ 
019 |a 1100604669 
020 |a 9781789535136  |q (electronic bk.) 
020 |a 1789535131  |q (electronic bk.) 
020 |z 9781789535136 
029 1 |a AU@  |b 000066230897 
035 |a (OCoLC)1101033581  |z (OCoLC)1100604669 
050 4 |a Q325.5 
082 0 4 |a 006.31  |2 23 
049 |a UAMI 
100 1 |a Valle, Rafael,  |d 1985-  |e author. 
245 1 0 |a Hands-On Generative Adversarial Networks with Keras :  |b Your Guide to Implementing Next-Generation Generative Adversarial Networks. 
260 |a Birmingham :  |b Packt,  |c 2019. 
300 |a 1 online resource (263 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Online resource; title from PDF title page (EBSCO, viewed August 30, 2019) 
505 0 |a Cover; Title Page; Copyright and Credits; About Packt; Foreword; Contributors; Table of Contents; Preface; Section 1: Introduction and Environment Setup; Chapter 1: Deep Learning Basics and Environment Setup; Deep learning basics; Artificial Neural Networks (ANNs); The parameter estimation; Backpropagation; Loss functions; L1 loss; L2 loss; Categorical crossentropy loss; Non-linearities; Sigmoid; Tanh; ReLU; A fully connected layer; The convolution layer; The max pooling layer; Deep learning environment setup; Installing Anaconda and Python; Setting up a virtual environment in Anaconda 
505 8 |a Installing TensorFlowInstalling Keras; Installing data visualization and machine learning libraries; The matplotlib library; The Jupyter library; The scikit-learn library; NVIDIA's CUDA Toolkit and cuDNN; The deep learning environment test; Summary; Chapter 2: Introduction to Generative Models; Discriminative and generative models compared; Comparing discriminative and generative models; Generative models; Autoregressive models; Variational autoencoders; Reversible flows; Generative adversarial networks; GANs -- building blocks; The discriminator; The generator; Real and fake data 
505 8 |a Random noiseDiscriminator and generator loss; GANs -- strengths and weaknesses; Summary; Section 2: Training GANs; Chapter 3: Implementing Your First GAN; Technical requirements; Imports; Implementing a Generator and Discriminator; Generator; Discriminator; Auxiliary functions; Training your GAN; Summary; Further reading; Chapter 4: Evaluating Your First GAN; The evaluation of GANs; Image quality; Image variety; Domain specifications; Qualitative methods; k-nearest neighbors; Mode analysis; Other methods; Quantitative methods; The Inception score; The Frechét Inception Distance 
505 8 |a Precision, Recall, and the F1 ScoreGANs and the birthday paradox; Summary; Chapter 5: Improving Your First GAN; Technical requirements; Challenges in training GANs; Mode collapse and mode drop; Training instability; Sensitivity to hyperparameter initialization; Vanishing gradients; Tricks of the trade; Tracking failure; Working with labels; Working with discrete inputs; Adding noise; Input normalization; Modified objective function; Distribute latent vector; Weight normalization; Avoid sparse gradients; Use a different optimizer; Learning rate schedule; GAN model architectures; ResNet GAN 
505 8 |a GAN algorithms and loss functionsLeast Squares GAN; Wasserstein GAN; Wasserstein GAN with gradient penalty; Relativistic GAN; Summary; Section 3: Application of GANs in Computer Vision, Natural Language Processing, and Audio; Chapter 6: Synthesizing and Manipulating Images with GANs; Technical requirements; Image-to-image translation; Experimental setup; Data; Training; Imports; Training signature; Training setup; Training loop; Logging; pix2pix implementation; Custom layers; Discriminator; Generator; pix2pixHD implementation; Improvements to pix2pix; Custom layers; Discriminator; Generator 
520 |a This book will explore deep learning and generative models, and their applications in artificial intelligence. You will learn to evaluate and improve your GAN models by eliminating challenges that are encountered in real-world applications. You will implement GAN architectures in various domains such as computer vision, NLP, and audio processing. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Machine learning. 
650 0 |a Neural networks (Computer science) 
650 0 |a Artificial intelligence. 
650 2 |a Neural Networks, Computer 
650 2 |a Artificial Intelligence 
650 6 |a Apprentissage automatique. 
650 6 |a Réseaux neuronaux (Informatique) 
650 6 |a Intelligence artificielle. 
650 7 |a artificial intelligence.  |2 aat 
650 7 |a Computer modelling & simulation.  |2 bicssc 
650 7 |a Machine learning.  |2 bicssc 
650 7 |a Pattern recognition.  |2 bicssc 
650 7 |a Computer vision.  |2 bicssc 
650 7 |a Mathematical theory of computation.  |2 bicssc 
650 7 |a Computers  |x Computer Vision & Pattern Recognition.  |2 bisacsh 
650 7 |a Computers  |x Computer Simulation.  |2 bisacsh 
650 7 |a Computers  |x Machine Theory.  |2 bisacsh 
650 7 |a Artificial intelligence.  |2 fast  |0 (OCoLC)fst00817247 
650 7 |a Machine learning.  |2 fast  |0 (OCoLC)fst01004795 
650 7 |a Neural networks (Computer science)  |2 fast  |0 (OCoLC)fst01036260 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2117001  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n BDZ0040044129 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5764480 
938 |a EBSCOhost  |b EBSC  |n 2117001 
938 |a YBP Library Services  |b YANK  |n 300508782 
994 |a 92  |b IZTAP