Cargando…

Hands-on machine learning with IBM Watson : leverage IBM Watson to implement machine learning techniques and algorithms using Python /

A practical guide on Machine learning with IBM cloud to act as a solid yet concise reference for the readers. You will learn about the role of data representation and feature extraction in machine learning. This book will help you learn how to use the IBM Cloud and Watson Machine learning service to...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Miller, James D. (Software consultant) (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham, UK : Packt Publishing, 2019.
Temas:
Acceso en línea:Texto completo
Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBSCO_on1100643335
003 OCoLC
005 20231017213018.0
006 m o d
007 cr unu||||||||
008 190509s2019 enka ob 000 0 eng d
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d TEFOD  |d EBLCP  |d UKAHL  |d MERUC  |d UKMGB  |d OCLCF  |d YDX  |d OCLCQ  |d N$T  |d OCLCO  |d OCLCQ  |d OCLCO  |d NZAUC  |d OCLCQ  |d OCLCO 
015 |a GBB995007  |2 bnb 
016 7 |a 019365469  |2 Uk 
019 |a 1091661449  |a 1096535319 
020 |a 1789616271 
020 |a 9781789616279  |q (electronic bk.) 
020 |z 9781789611854 
029 1 |a AU@  |b 000066230244 
029 1 |a UKMGB  |b 019365469 
029 1 |a ZWZ  |b 235373133 
029 1 |a AU@  |b 000065333088 
035 |a (OCoLC)1100643335  |z (OCoLC)1091661449  |z (OCoLC)1096535319 
037 |a CL0501000047  |b Safari Books Online 
050 4 |a QA76.73.P98 
082 0 4 |a 006.31  |2 23 
049 |a UAMI 
100 1 |a Miller, James D.  |c (Software consultant),  |e author. 
245 1 0 |a Hands-on machine learning with IBM Watson :  |b leverage IBM Watson to implement machine learning techniques and algorithms using Python /  |c James D. Miller. 
264 1 |a Birmingham, UK :  |b Packt Publishing,  |c 2019. 
300 |a 1 online resource :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references. 
588 0 |a Online resource; title from title page (Safari, viewed May 8, 2019). 
505 0 |a Cover; Title Page; Copyright and Credits; About Packt; Contributors; Table of Contents; Preface; Section 1: Introduction and Foundation; Chapter 1: Introduction to IBM Cloud; Understanding IBM Cloud; Prerequisites ; Accessing the IBM Cloud ; Cloud resources ; The IBM Cloud and Watson Machine Learning services; Setting up the environment; Watson Studio Cloud ; Watson Studio architecture and layout ; Establishing context ; Setting up a new project ; Data visualization tutorial ; Summary ; Chapter 2: Feature Extraction -- A Bag of Tricks; Preprocessing; The data refinery; Data 
505 8 |a Adding the refineryRefining data by using commands; Dimensional reduction; Data fusion; Catalog setup; Recommended assets; A bag of tricks; Summary; Chapter 3: Supervised Machine Learning Models for Your Data; Model selection; IBM Watson Studio Model Builder; Using the model builder; Training data; Guessing which technique to use; Deployment; Model builder deployment steps; Testing the model; Continuous learning and model evaluation; Classification; Binary classification; Multiclass classification; Regression; Testing the predictive capability; Summary 
505 8 |a Chapter 4: Implementing Unsupervised AlgorithmsUnsupervised learning; Watson Studio, machine learning flows, and KMeans; Getting started; Creating an SPSS modeler flow; Additional node work; Training and testing; SPSS flow and K-means; Exporting model results; Semi-supervised learning; Anomaly detection; Machine learning based approaches; Online or batch learning; Summary; Section 2: Tools and Ingredients for Machine Learning in IBM Cloud; Chapter 5: Machine Learning Workouts on IBM Cloud; Watson Studio and Python; Setting up the environment; Try it out; Data cleansing and preparation 
505 8 |a K-means clustering using PythonThe Python code; Observing the results; Implementing in Watson; Saving your work; K-nearest neighbors; The Python code; Implementing in Watson; Exploring Markdown text; Time series prediction example; Time series analysis; Setup; Data preprocessing; Indexing for visualization; Visualizations; Forecasting sales; Validation; Summary; Chapter 6: Using Spark with IBM Watson Studio; Introduction to Apache Spark; Watson Studio and Spark; Creating a Spark-enabled notebook; Creating a Spark pipeline in Watson Studio; What is a pipeline?; Pipeline objectives 
505 8 |a Breaking down a pipeline exampleData preparation; The pipeline; A data analysis and visualization example; Setup; Getting the data; Loading the data; Exploration; Extraction; Plotting; Saving; Downloading your notebook; Summary; Chapter 7: Deep Learning Using TensorFlow on the IBM Cloud; Introduction to deep learning ; TensorFlow basics ; Neural networks and TensorFlow ; An example ; Creating the new project; Notebook asset type; Running the imported notebook; Reviewing the notebook; TensorFlow and image classifications; Adding the service; Required modules; Using the API key in code 
520 |a A practical guide on Machine learning with IBM cloud to act as a solid yet concise reference for the readers. You will learn about the role of data representation and feature extraction in machine learning. This book will help you learn how to use the IBM Cloud and Watson Machine learning service to develop real-world machine learning solutions. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Machine learning. 
650 0 |a Python (Computer program language) 
650 0 |a Watson (Computer) 
650 0 |a Computer algorithms. 
650 6 |a Apprentissage automatique. 
650 6 |a Python (Langage de programmation) 
650 6 |a Watson (Ordinateur) 
650 6 |a Algorithmes. 
650 7 |a algorithms.  |2 aat 
650 7 |a Computer algorithms  |2 fast 
650 7 |a Machine learning  |2 fast 
650 7 |a Python (Computer program language)  |2 fast 
650 7 |a Watson (Computer)  |2 fast 
776 0 8 |i Print version:  |a D. Miller, James.  |t Hands-On Machine Learning with IBM Watson : Leverage IBM Watson to Implement Machine Learning Techniques and Algorithms Using Python.  |d Birmingham : Packt Publishing Ltd, ©2019  |z 9781789611854 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2094776  |z Texto completo 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781789611854/?ar  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH36147905 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5744471 
938 |a EBSCOhost  |b EBSC  |n 2094776 
938 |a YBP Library Services  |b YANK  |n 16142482 
994 |a 92  |b IZTAP