Hands-on data science for marketing : improve your marketing strategies with machine learning using Python and R /
Section 2: Descriptive Versus Explanatory Analysis; Chapter 2: Key Performance Indicators and Visualizations; KPIs to measure performances of different marketing efforts; Sales revenue; Cost per acquisition (CPA); Digital marketing KPIs; Computing and visualizing KPIs using Python; Aggregate convers...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Birmingham, UK :
Packt Publishing,
2019.
|
Temas: | |
Acceso en línea: | Texto completo Texto completo |
Tabla de Contenidos:
- Cover; Title Page; Copyright and Credits; About Packt; Contributors; Table of Contents; Preface; Section 1: Introduction and Environment Setup; Chapter 1: Data Science and Marketing; Technical requirements; Trends in marketing; Applications of data science in marketing; Descriptive versus explanatory versus predictive analyses; Types of learning algorithms; Data science workflow; Setting up the Python environment; Installing the Anaconda distribution; A simple logistic regression model in Python; Setting up the R environment; Installing R and RStudio; A simple logistic regression model in R
- Chapter 3: Drivers behind Marketing EngagementUsing regression analysis for explanatory analysis; Explanatory analysis and regression analysis; Logistic regression; Regression analysis with Python; Data analysis and visualizations; Engagement rate; Sales channels; Total claim amounts; Regression analysis; Continuous variables; Categorical variables; Combining continuous and categorical variables; Regression analysis with R; Data analysis and visualization; Engagement rate; Sales channels; Total claim amounts; Regression analysis; Continuous variables; Categorical variables
- Combining continuous and categorical variablesSummary; Chapter 4: From Engagement to Conversion; Decision trees; Logistic regression versus decision trees; Growing decision trees; Decision trees and interpretations with Python; Data analysis and visualization; Conversion rate; Conversion rates by job; Default rates by conversions; Bank balances by conversions; Conversion rates by number of contacts; Encoding categorical variables; Encoding months; Encoding jobs; Encoding marital; Encoding the housing and loan variables; Building decision trees; Interpreting decision trees
- Decision trees and interpretations with RData analysis and visualizations; Conversion rate; Conversion rates by job; Default rates by conversions; Bank balance by conversions; Conversion rates by number of contacts; Encoding categorical variables; Encoding the month; Encoding the job, housing, and marital variables; Building decision trees; Interpreting decision trees; Summary; Section 3: Product Visibility and Marketing; Chapter 5: Product Analytics; The importance of product analytics; Product analytics using Python; Time series trends; Repeat customers; Trending items over time