Cargando…

Hands-on data science for marketing : improve your marketing strategies with machine learning using Python and R /

Section 2: Descriptive Versus Explanatory Analysis; Chapter 2: Key Performance Indicators and Visualizations; KPIs to measure performances of different marketing efforts; Sales revenue; Cost per acquisition (CPA); Digital marketing KPIs; Computing and visualizing KPIs using Python; Aggregate convers...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Hwang, Yoon Hyup (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham, UK : Packt Publishing, 2019.
Temas:
Acceso en línea:Texto completo
Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBSCO_on1100643331
003 OCoLC
005 20231017213018.0
006 m o d
007 cr unu||||||||
008 190509s2019 enka o 000 0 eng d
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d TEFOD  |d EBLCP  |d UKAHL  |d MERUC  |d UKMGB  |d OCLCF  |d YDX  |d OCLCQ  |d N$T  |d OCLCQ  |d CULIB  |d OCLCQ  |d OCLCO  |d K6U  |d OCLCQ 
015 |a GBB995004  |2 bnb 
016 7 |a 019365457  |2 Uk 
019 |a 1091659201  |a 1096523152  |a 1147892140  |a 1162201723  |a 1382488676 
020 |a 178934882X 
020 |a 9781789348828  |q (electronic bk.) 
020 |a 1789346347 
020 |a 9781789346343 
020 |z 9781789346343 
029 1 |a AU@  |b 000066230934 
029 1 |a UKMGB  |b 019365457 
029 1 |a AU@  |b 000065333085 
035 |a (OCoLC)1100643331  |z (OCoLC)1091659201  |z (OCoLC)1096523152  |z (OCoLC)1147892140  |z (OCoLC)1162201723  |z (OCoLC)1382488676 
037 |a CL0501000047  |b Safari Books Online 
050 4 |a HF5415.125 
082 0 4 |a 658.834  |2 23 
049 |a UAMI 
100 1 |a Hwang, Yoon Hyup,  |e author. 
245 1 0 |a Hands-on data science for marketing :  |b improve your marketing strategies with machine learning using Python and R /  |c Yoon Hyup Hwang. 
264 1 |a Birmingham, UK :  |b Packt Publishing,  |c 2019. 
300 |a 1 online resource :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Online resource; title from title page (Safari, viewed May 1, 2019). 
505 0 |a Cover; Title Page; Copyright and Credits; About Packt; Contributors; Table of Contents; Preface; Section 1: Introduction and Environment Setup; Chapter 1: Data Science and Marketing; Technical requirements; Trends in marketing; Applications of data science in marketing; Descriptive versus explanatory versus predictive analyses; Types of learning algorithms; Data science workflow; Setting up the Python environment; Installing the Anaconda distribution; A simple logistic regression model in Python; Setting up the R environment; Installing R and RStudio; A simple logistic regression model in R 
505 8 |a Chapter 3: Drivers behind Marketing EngagementUsing regression analysis for explanatory analysis; Explanatory analysis and regression analysis; Logistic regression; Regression analysis with Python; Data analysis and visualizations; Engagement rate; Sales channels; Total claim amounts; Regression analysis; Continuous variables; Categorical variables; Combining continuous and categorical variables; Regression analysis with R; Data analysis and visualization; Engagement rate; Sales channels; Total claim amounts; Regression analysis; Continuous variables; Categorical variables 
505 8 |a Combining continuous and categorical variablesSummary; Chapter 4: From Engagement to Conversion; Decision trees; Logistic regression versus decision trees; Growing decision trees; Decision trees and interpretations with Python; Data analysis and visualization; Conversion rate; Conversion rates by job; Default rates by conversions; Bank balances by conversions; Conversion rates by number of contacts; Encoding categorical variables; Encoding months; Encoding jobs; Encoding marital; Encoding the housing and loan variables; Building decision trees; Interpreting decision trees 
505 8 |a Decision trees and interpretations with RData analysis and visualizations; Conversion rate; Conversion rates by job; Default rates by conversions; Bank balance by conversions; Conversion rates by number of contacts; Encoding categorical variables; Encoding the month; Encoding the job, housing, and marital variables; Building decision trees; Interpreting decision trees; Summary; Section 3: Product Visibility and Marketing; Chapter 5: Product Analytics; The importance of product analytics; Product analytics using Python; Time series trends; Repeat customers; Trending items over time 
520 |a Section 2: Descriptive Versus Explanatory Analysis; Chapter 2: Key Performance Indicators and Visualizations; KPIs to measure performances of different marketing efforts; Sales revenue; Cost per acquisition (CPA); Digital marketing KPIs; Computing and visualizing KPIs using Python; Aggregate conversion rate; Conversion rates by age; Conversions versus non-conversions; Conversions by age and marital status; Computing and visualizing KPIs using R; Aggregate conversion rate; Conversion rates by age; Conversions versus non-conversions; Conversions by age and marital status; Summary 
520 |a This book will be an excellent resource for both Python and R developers and will help them apply data science and machine learning to marketing with real-world data sets. By the end of this book, you will be well equipped with the required knowledge and expertise to draw insights from data and improve your marketing strategies. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Marketing  |x Data processing. 
650 0 |a Machine learning. 
650 0 |a Marketing research. 
650 0 |a Python (Computer program language) 
650 0 |a R (Computer program language) 
650 6 |a Marketing  |x Informatique. 
650 6 |a Apprentissage automatique. 
650 6 |a Marketing  |x Recherche. 
650 6 |a Python (Langage de programmation) 
650 6 |a R (Langage de programmation) 
650 7 |a Machine learning.  |2 fast  |0 (OCoLC)fst01004795 
650 7 |a Marketing  |x Data processing.  |2 fast  |0 (OCoLC)fst01010187 
650 7 |a Marketing research.  |2 fast  |0 (OCoLC)fst01010284 
650 7 |a Python (Computer program language)  |2 fast  |0 (OCoLC)fst01084736 
650 7 |a R (Computer program language)  |2 fast  |0 (OCoLC)fst01086207 
776 0 8 |i Print version:  |a Hwang, Yoon Hyup.  |t Hands-On Data Science for Marketing : Improve Your Marketing Strategies with Machine Learning Using Python and R.  |d Birmingham : Packt Publishing Ltd, ©2019  |z 9781789346343 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2094760  |z Texto completo 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781789346343/?ar  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH36147896 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5744478 
938 |a EBSCOhost  |b EBSC  |n 2094760 
938 |a YBP Library Services  |b YANK  |n 16142469 
994 |a 92  |b IZTAP