Cargando…

Python Reinforcement Learning : Solve Complex Real-World Problems by Mastering Reinforcement Learning Algorithms Using OpenAI Gym and TensorFlow /

Reinforcement learning and deep reinforcement learning are the trending and most promising branches of artificial intelligence. This Learning Path will enable you to master not only the basic reinforcement learning algorithms but also the advanced deep reinforcement learning algorithms and their lim...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Ravichandiran, Sudharsan (Autor), Saito, Sean (Autor), Shanmugamani, Rajalingappaa (Autor), Wenzhuo, Yang (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham : Packt Publishing, Limited, 2019.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBSCO_on1099341025
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 190427s2019 enk o 000 0 eng d
040 |a EBLCP  |b eng  |e rda  |e pn  |c EBLCP  |d UKAHL  |d OCLCQ  |d YDX  |d OCLCQ  |d N$T  |d OCLCQ  |d OCLCF  |d OCLCQ  |d NLW  |d OCLCO  |d YDX  |d OCLCQ  |d OCLCO  |d OCLCQ 
019 |a 1099338263 
020 |a 9781838640149  |q (electronic book) 
020 |a 1838640142  |q (electronic book) 
035 |a (OCoLC)1099341025  |z (OCoLC)1099338263 
050 4 |a QA76.73.P98  |b P98 2019 
082 0 4 |a 006.31  |2 23 
049 |a UAMI 
245 0 0 |a Python Reinforcement Learning :  |b Solve Complex Real-World Problems by Mastering Reinforcement Learning Algorithms Using OpenAI Gym and TensorFlow /  |c Sudharsan Ravichandiran, Sean Saito, Rajalingappaa Shanmugamani and Yang Wenzhuo. 
264 1 |a Birmingham :  |b Packt Publishing, Limited,  |c 2019. 
300 |a 1 online resource (484 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
505 0 |a Cover; Title Page; Copyright and Credits; About Packt; Contributors; Table of Contents; Preface; Chapter 1: Introduction to Reinforcement Learning; What is RL?; RL algorithm; How RL differs from other ML paradigms; Elements of RL; Agent; Policy function; Value function; Model; Agent environment interface; Types of RL environment; Deterministic environment; Stochastic environment; Fully observable environment; Partially observable environment; Discrete environment; Continuous environment; Episodic and non-episodic environment; Single and multi-agent environment; RL platforms 
505 8 |a OpenAI Gym and UniverseDeepMind Lab; RL-Glue; Project Malmo; ViZDoom; Applications of RL; Education; Medicine and healthcare; Manufacturing; Inventory management; Finance; Natural Language Processing and Computer Vision; Summary; Questions; Further reading; Chapter 2: Getting Started with OpenAI and TensorFlow; Setting up your machine; Installing Anaconda; Installing Docker; Installing OpenAI Gym and Universe; Common error fixes; OpenAI Gym; Basic simulations; Training a robot to walk; OpenAI Universe; Building a video game bot; TensorFlow; Variables, constants, and placeholders; Variables 
505 8 |a ConstantsPlaceholders; Computation graph; Sessions; TensorBoard; Adding scope; Summary; Questions; Further reading; Chapter 3: The Markov Decision Process and Dynamic Programming; The Markov chain and Markov process; Markov Decision Process; Rewards and returns; Episodic and continuous tasks; Discount factor; The policy function; State value function; State-action value function (Q function); The Bellman equation and optimality; Deriving the Bellman equation for value and Q functions; Solving the Bellman equation; Dynamic programming; Value iteration; Policy iteration 
505 8 |a Solving the frozen lake problemValue iteration; Policy iteration; Summary; Questions; Further reading; Chapter 4: Gaming with Monte Carlo Methods; Monte Carlo methods; Estimating the value of pi using Monte Carlo; Monte Carlo prediction; First visit Monte Carlo; Every visit Monte Carlo; Let's play Blackjack with Monte Carlo; Monte Carlo control; Monte Carlo exploration starts; On-policy Monte Carlo control; Off-policy Monte Carlo control; Summary; Questions; Further reading; Chapter 5: Temporal Difference Learning; TD learning; TD prediction; TD control; Q learning 
505 8 |a Solving the taxi problem using Q learningSARSA; Solving the taxi problem using SARSA; The difference between Q learning and SARSA; Summary; Questions; Further reading; Chapter 6: Multi-Armed Bandit Problem; The MAB problem; The epsilon-greedy policy; The softmax exploration algorithm; The upper confidence bound algorithm; The Thompson sampling algorithm; Applications of MAB; Identifying the right advertisement banner using MAB; Contextual bandits; Summary; Questions; Further reading; Chapter 7: Playing Atari Games; Introduction to Atari games; Building an Atari emulator; Getting started 
500 |a Implementation of the Atari emulator 
520 |a Reinforcement learning and deep reinforcement learning are the trending and most promising branches of artificial intelligence. This Learning Path will enable you to master not only the basic reinforcement learning algorithms but also the advanced deep reinforcement learning algorithms and their limitations. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Python (Computer program language) 
650 0 |a Reinforcement learning. 
650 6 |a Python (Langage de programmation) 
650 6 |a Apprentissage par renforcement (Intelligence artificielle) 
650 7 |a Information technology: general issues.  |2 bicssc 
650 7 |a Artificial intelligence.  |2 bicssc 
650 7 |a Neural networks & fuzzy systems.  |2 bicssc 
650 7 |a Computers  |x Intelligence (AI) & Semantics.  |2 bisacsh 
650 7 |a Computers  |x Information Technology.  |2 bisacsh 
650 7 |a Computers  |x Neural Networks.  |2 bisacsh 
650 7 |a Python (Computer program language)  |2 fast  |0 (OCoLC)fst01084736 
650 7 |a Reinforcement learning.  |2 fast  |0 (OCoLC)fst01732553 
700 1 |a Ravichandiran, Sudharsan,  |e author. 
700 1 |a Saito, Sean,  |e author. 
700 1 |a Shanmugamani, Rajalingappaa,  |e author. 
700 1 |a Wenzhuo, Yang,  |e author. 
776 0 8 |i Print version:  |a Ravichandiran, Sudharsan.  |t Python Reinforcement Learning : Solve Complex Real-World Problems by Mastering Reinforcement Learning Algorithms Using OpenAI Gym and TensorFlow.  |d Birmingham : Packt Publishing, Limited, ©2019  |z 9781838649777 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2108228  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH36202699 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5755722 
938 |a EBSCOhost  |b EBSC  |n 2108228 
938 |a YBP Library Services  |b YANK  |n 300481873 
994 |a 92  |b IZTAP