Cargando…

TensorFlow Reinforcement Learning Quick Start Guide : Get up and Running with Training and Deploying Intelligent, Self-Learning Agents Using Python.

This book is an essential guide for anyone interested in Reinforcement Learning. The book provides an actionable reference for Reinforcement Learning algorithms and their applications using TensorFlow and Python. It will help readers leverage the power of algorithms such as Deep Q-Network (DQN), Dee...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Balakrishnan, Kaushik
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham : Packt Publishing Ltd, 2019.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBSCO_on1096525137
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 190413s2019 enk o 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d TEFOD  |d OCLCF  |d OCLCQ  |d UKAHL  |d OCLCQ  |d N$T  |d OCLCQ  |d NLW  |d K6U  |d OCLCO  |d UKMGB  |d OCLCO  |d OCLCQ  |d PSYSI  |d OCLCQ 
015 |a GBC216935  |2 bnb 
016 7 |a 019365464  |2 Uk 
020 |a 1789533449 
020 |a 9781789533446  |q (electronic bk.) 
020 |z 9781789533583  |q print 
029 1 |a AU@  |b 000065314501 
029 1 |a UKMGB  |b 019365464 
029 1 |a AU@  |b 000070535697 
035 |a (OCoLC)1096525137 
037 |a 17D228CA-B9A5-47F9-8400-6F06CA49CCCE  |b OverDrive, Inc.  |n http://www.overdrive.com 
050 4 |a QA76.73.P98 
082 0 4 |a 005.133  |2 23 
049 |a UAMI 
100 1 |a Balakrishnan, Kaushik. 
245 1 0 |a TensorFlow Reinforcement Learning Quick Start Guide :  |b Get up and Running with Training and Deploying Intelligent, Self-Learning Agents Using Python. 
260 |a Birmingham :  |b Packt Publishing Ltd,  |c 2019. 
300 |a 1 online resource (175 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
505 0 |a Cover; Title Page; Copyright and Credits; Dedication; About Packt; Contributors; Table of Contents; Preface; Chapter 1: Up and Running with Reinforcement Learning; Why RL?; Formulating the RL problem; The relationship between an agent and its environment; Defining the states of the agent; Defining the actions of the agent; Understanding policy, value, and advantage functions; Identifying episodes; Identifying reward functions and the concept of discounted rewards; Rewards; Learning the Markov decision process ; Defining the Bellman equation; On-policy versus off-policy learning 
505 8 |a On-policy methodOff-policy method; Model-free and model-based training; Algorithms covered in this book; Summary; Questions; Further reading; Chapter 2: Temporal Difference, SARSA, and Q-Learning; Technical requirements; Understanding TD learning; Relation between the value functions and state; Understanding SARSA and Q-Learning ; Learning SARSA ; Understanding Q-learning; Cliff walking and grid world problems; Cliff walking with SARSA; Cliff walking with Q-learning; Grid world with SARSA; Summary; Further reading; Chapter 3: Deep Q-Network; Technical requirements 
505 8 |a Learning the theory behind a DQNUnderstanding target networks; Learning about replay buffer; Getting introduced to the Atari environment; Summary of Atari games; Pong; Breakout; Space Invaders; LunarLander; The Arcade Learning Environment ; Coding a DQN in TensorFlow; Using the model.py file; Using the funcs.py file; Using the dqn.py file; Evaluating the performance of the DQN on Atari Breakout; Summary; Questions; Further reading; Chapter 4: Double DQN, Dueling Architectures, and Rainbow; Technical requirements; Understanding Double DQN ; Coding DDQN and training to play Atari Breakout 
505 8 |a Evaluating the performance of DDQN on Atari BreakoutUnderstanding dueling network architectures; Coding dueling network architecture and training it to play Atari Breakout; Combining V and A to obtain Q; Evaluating the performance of dueling architectures on Atari Breakout ; Understanding Rainbow networks; DQN improvements; Prioritized experience replay ; Multi-step learning; Distributional RL; Noisy nets; Running a Rainbow network on Dopamine; Rainbow using Dopamine; Summary; Questions; Further reading; Chapter 5: Deep Deterministic Policy Gradient; Technical requirements 
505 8 |a Actor-Critic algorithms and policy gradientsPolicy gradient; Deep Deterministic Policy Gradient; Coding ddpg.py; Coding AandC.py; Coding TrainOrTest.py; Coding replay_buffer.py; Training and testing the DDPG on Pendulum-v0; Summary; Questions; Further reading; Chapter 6: Asynchronous Methods -- A3C and A2C; Technical requirements; The A3C algorithm; Loss functions; CartPole and LunarLander; CartPole; LunarLander; The A3C algorithm applied to CartPole; Coding cartpole.py; Coding a3c.py; The AC class; The Worker() class; Coding utils.py; Training on CartPole 
500 |a The A3C algorithm applied to LunarLander 
520 |a This book is an essential guide for anyone interested in Reinforcement Learning. The book provides an actionable reference for Reinforcement Learning algorithms and their applications using TensorFlow and Python. It will help readers leverage the power of algorithms such as Deep Q-Network (DQN), Deep Deterministic Policy Gradients (DDPG), and ... 
588 0 |a Print version record. 
504 |a Includes bibliographical references. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Python (Computer program language) 
650 0 |a Artificial intelligence. 
650 0 |a Machine learning. 
650 6 |a Python (Langage de programmation) 
650 6 |a Intelligence artificielle. 
650 6 |a Apprentissage automatique. 
650 7 |a artificial intelligence.  |2 aat 
650 7 |a Database design & theory.  |2 bicssc 
650 7 |a Mathematical theory of computation.  |2 bicssc 
650 7 |a Machine learning.  |2 bicssc 
650 7 |a Information architecture.  |2 bicssc 
650 7 |a Artificial intelligence.  |2 bicssc 
650 7 |a Computers  |x Machine Theory.  |2 bisacsh 
650 7 |a Computers  |x Data Modeling & Design.  |2 bisacsh 
650 7 |a Computers  |x Intelligence (AI) & Semantics.  |2 bisacsh 
650 7 |a Artificial intelligence.  |2 fast  |0 (OCoLC)fst00817247 
650 7 |a Machine learning.  |2 fast  |0 (OCoLC)fst01004795 
650 7 |a Python (Computer program language)  |2 fast  |0 (OCoLC)fst01084736 
776 0 8 |i Print version:  |a Balakrishnan, Kaushik.  |t TensorFlow Reinforcement Learning Quick Start Guide : Get up and Running with Training and Deploying Intelligent, Self-Learning Agents Using Python.  |d Birmingham : Packt Publishing Ltd, ©2019  |z 9781789533583 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2094787  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH36155814 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5744473 
938 |a EBSCOhost  |b EBSC  |n 2094787 
994 |a 92  |b IZTAP