Cargando…

Applied Unsupervised Learning with R : Uncover Hidden Relationships and Patterns with K-Means Clustering, Hierarchical Clustering, and PCA.

Starting with the basics, Applied Unsupervised Learning with R explains clustering methods, distribution analysis, data encoders, and all features of R that enable you to understand your data better and get answers to all your business questions.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Malik, Alok
Otros Autores: Tuckfield, Bradford
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham : Packt Publishing Ltd, 2019.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mi 4500
001 EBSCO_on1096227855
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 190406s2019 enk o 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d TEFOD  |d OCLCF  |d UKAHL  |d OCLCQ  |d N$T  |d OCLCQ  |d K6U  |d NLW  |d OCLCO  |d OCLCQ  |d PSYSI  |d OCLCQ 
020 |a 1789951461 
020 |a 9781789951462  |q (electronic bk.) 
029 1 |a AU@  |b 000066229748 
029 1 |a CHNEW  |b 001053141 
029 1 |a CHVBK  |b 567698238 
029 1 |a AU@  |b 000070676468 
035 |a (OCoLC)1096227855 
037 |a 17537073-6211-4233-9C2D-213B82CF7F10  |b OverDrive, Inc.  |n http://www.overdrive.com 
050 4 |a QA276.45.R3 
082 0 4 |a 519.502855133  |2 23 
049 |a UAMI 
100 1 |a Malik, Alok. 
245 1 0 |a Applied Unsupervised Learning with R :  |b Uncover Hidden Relationships and Patterns with K-Means Clustering, Hierarchical Clustering, and PCA. 
260 |a Birmingham :  |b Packt Publishing Ltd,  |c 2019. 
300 |a 1 online resource (320 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Print version record. 
505 0 |a Intro; Preface; Introduction to Clustering Methods; Introduction; Introduction to Clustering; Uses of Clustering; Introduction to the Iris Dataset; Exercise 1: Exploring the Iris Dataset; Types of Clustering; Introduction to k-means Clustering; Euclidean Distance; Manhattan Distance; Cosine Distance; The Hamming Distance; k-means Clustering Algorithm; Steps to Implement k-means Clustering; Exercise 2: Implementing k-means Clustering on the Iris Dataset; Activity 1: k-means Clustering with Three Clusters; Introduction to k-means Clustering with Built-In Functions 
505 8 |a K-means Clustering with Three ClustersExercise 3: k-means Clustering with R Libraries; Introduction to Market Segmentation; Exercise 4: Exploring the Wholesale Customer Dataset; Activity 2: Customer Segmentation with k-means; Introduction to k-medoids Clustering; The k-medoids Clustering Algorithm; k-medoids Clustering Code; Exercise 5: Implementing k-medoid Clustering; k-means Clustering versus k-medoids Clustering; Activity 3: Performing Customer Segmentation with k-medoids Clustering; Deciding the Optimal Number of Clusters; Types of Clustering Metrics; Silhouette Score 
505 8 |a Exercise 6: Calculating the Silhouette ScoreExercise 7: Identifying the Optimum Number of Clusters; WSS/Elbow Method; Exercise 8: Using WSS to Determine the Number of Clusters; The Gap Statistic; Exercise 9: Calculating the Ideal Number of Clusters with the Gap Statistic; Activity 4: Finding the Ideal Number of Market Segments; Summary; Advanced Clustering Methods; Introduction; Introduction to k-modes Clustering; Steps for k-Modes Clustering; Exercise 10: Implementing k-modes Clustering; Activity 5: Implementing k-modes Clustering on the Mushroom Dataset 
505 8 |a Introduction to Density-Based Clustering (DBSCAN)Steps for DBSCAN; Exercise 11: Implementing DBSCAN; Uses of DBSCAN; Activity 6: Implementing DBSCAN and Visualizing the Results; Introduction to Hierarchical Clustering; Types of Similarity Metrics; Steps to Perform Agglomerative Hierarchical Clustering; Exercise 12: Agglomerative Clustering with Different Similarity Measures; Divisive Clustering; Steps to Perform Divisive Clustering; Exercise 13: Performing DIANA Clustering; Activity 7: Performing Hierarchical Cluster Analysis on the Seeds Dataset; Summary; Probability Distributions 
505 8 |a IntroductionBasic Terminology of Probability Distributions; Uniform Distribution; Exercise 14: Generating and Plotting Uniform Samples in R; Normal Distribution; Exercise 15: Generating and Plotting a Normal Distribution in R; Skew and Kurtosis; Log-Normal Distributions; Exercise 16: Generating a Log-Normal Distribution from a Normal Distribution; The Binomial Distribution; Exercise 17: Generating a Binomial Distribution; The Poisson Distribution; The Pareto Distribution; Introduction to Kernel Density Estimation; KDE Algorithm; Exercise 18: Visualizing and Understanding KDE 
500 |a Exercise 19: Studying the Effect of Changing Kernels on a Distribution 
520 |a Starting with the basics, Applied Unsupervised Learning with R explains clustering methods, distribution analysis, data encoders, and all features of R that enable you to understand your data better and get answers to all your business questions. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a R (Computer program language) 
650 0 |a Cluster analysis  |x Computer programs. 
650 0 |a Probabilities  |x Data processing. 
650 0 |a Algorithms. 
650 2 |a Algorithms 
650 6 |a R (Langage de programmation) 
650 6 |a Probabilités  |x Informatique. 
650 6 |a Algorithmes. 
650 7 |a algorithms.  |2 aat 
650 7 |a Data capture & analysis.  |2 bicssc 
650 7 |a Neural networks & fuzzy systems.  |2 bicssc 
650 7 |a Artificial intelligence.  |2 bicssc 
650 7 |a Computers  |x Data Processing.  |2 bisacsh 
650 7 |a Computers  |x Neural Networks.  |2 bisacsh 
650 7 |a Computers  |x Intelligence (AI) & Semantics.  |2 bisacsh 
650 7 |a Algorithms.  |2 fast  |0 (OCoLC)fst00805020 
650 7 |a Cluster analysis  |x Computer programs.  |2 fast  |0 (OCoLC)fst00864977 
650 7 |a Probabilities  |x Data processing.  |2 fast  |0 (OCoLC)fst01077741 
650 7 |a R (Computer program language)  |2 fast  |0 (OCoLC)fst01086207 
700 1 |a Tuckfield, Bradford. 
776 0 8 |i Print version:  |a Malik, Alok.  |t Applied Unsupervised Learning with R : Uncover Hidden Relationships and Patterns with K-Means Clustering, Hierarchical Clustering, and PCA.  |d Birmingham : Packt Publishing Ltd, ©2019  |z 9781789956399 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2092865  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH36142857 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5742601 
938 |a EBSCOhost  |b EBSC  |n 2092865 
994 |a 92  |b IZTAP