Cargando…

Foundations of quantum theory /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: International School of Physics "Enrico Fermi" Varenna, Italy
Otros Autores: Rasel, E. M. (Editor ), Schleich, Wolfgang (Editor ), Wölk, S. (Sabine) (Editor )
Formato: Electrónico Congresos, conferencias eBook
Idioma:Inglés
Publicado: Amsterdam : IOS Press, 2019.
Colección:Proceedings of the International School of Physics "Enrico Fermi", course 197
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Intro; Title Page; Contents; Preface; Course group shot; Science in tumultuous times; Introduction; 1. The years of the First World War (1914-1918); 2. Post-War years (1919-1921); 3. Quantum mechanics (the 1920s); 4. Exile (1933); 5. The atom bomb (1945); 6. The Nobel Prize (1954); 7. Conclusion (1970); Appendix A; Appendix B; But God does play dice: The path to quantum mechanics; Introduction; 1. Breslau, Germany (now Wroclaw, Poland); 2. Gottingen; 3. Frankfurt; 4. Gottingen again; 5. America; 6. Gottingen; From the Bohr model to Heisenberg's quantum mechanics; 1. Introduction
  • 2. From Balmer to Bohr; 3. The Bohr model between success and failure; 4. Heisenberg's path from classical physics to quantum mechanics; 4.1. Action integral in Fourier space; 4.2. Extension to an arbitrary frequency spectrum; 4.3. The appearance of non-commuting quantities; 5. Quantization of the linear harmonic oscillator; 6. Light at the end of the tunnel; The linearity of quantum mechanics and the birth of the Schrodinger equation; 1. Introduction; 1.1. Linearization of the non-linear wave equation; 1.2. Key ideas of our previous approaches; 1.3. Outline
  • 2. Road towards the Schrodinger equation; 3. Comparison with the literature; 4. Why zero?; 4.1. A curious mathematical identity; 4.2. Definition of a quantum wave by its amplitude; 4.3. Formulation of the problem; 5. Classical mechanics guides the amplitude of the Schrodinger wave; 5.1. Hamilton-Jacobi theory in a nutshell; 5.2. Classical action as a phase field; 6. Quantum condition implies linear Schrodinger equation; 6.1. Emergence of a quantum phase; 6.2. Continuity equation with quantum current; 6.3. Quantum Hamilton-Jacobi equation
  • 7. Classicality condition implies non-linear wave equation; 7.1. General real amplitude; 7.2. Amplitude given by Van Vleck determinant; 7.2.1. Super-classical waves; 7.2.2. Super-classical waves are WKB waves; 8. From Van Vleck via Rosen to Schrodinger; 8.1. The need for linearity; 8.2. Linearization due to quantum current; 9. Summary and outlook; Appendix A. Van Vleck continuity equation; Appendix A.1. One-dimensional case; Appendix A.1.1. Derivation of continuity equation; Appendix A.1.2. Explicit expressions for density and current from action
  • Appendix A.1.3. Density and current from continuity equation; Appendix A.2. Multi-dimensional case; Appendix A.3. Differential of a determinant; Appendix B. Non-linear wave equation for WKB wave; Wave phenomena and wave equations; 1. Preludium; 2. Water waves; 2.1. Wave equation for water waves; 3. Matter wave; 3.1. Wave equation for matter wave; 4. Final remark; 5. Further readings; History leading to Bell's inequality and experiments; 1. Introduction; 2. Early history; 3. The beginnings of quantum mechanics; 4. Bell Inequalities; 5. Initial experiments