Cargando…

Intelligent projects using Python : 9 real-world AI projects leveraging machine learning and deep learning with TensorFlow and Keras /

This book includes 9 projects on building smart and practical AI-based systems. These projects cover solutions to different domain-specific problems in healthcare, e-commerce and more. With this book, you will apply different machine learning and deep learning techniques and learn how to build your...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Pattanayak, Santanu (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham : Packt, [2019]
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBSCO_on1086133958
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 190216s2019 enk o 000 0 eng d
040 |a EBLCP  |b eng  |e rda  |e pn  |c EBLCP  |d TEFOD  |d OCLCF  |d OCLCQ  |d N$T  |d K6U  |d OCLCO  |d OCLCQ  |d OCLCO 
020 |a 9781788994866  |q (electronic bk.) 
020 |a 1788994868  |q (electronic bk.) 
029 1 |a AU@  |b 000065065508 
029 1 |a CHNEW  |b 001040246 
029 1 |a CHVBK  |b 559039093 
029 1 |a AU@  |b 000068892059 
035 |a (OCoLC)1086133958 
037 |a 06C61961-E83D-410C-A9CB-3E83B0ED8FB7  |b OverDrive, Inc.  |n http://www.overdrive.com 
050 4 |a Q335 
082 0 4 |a 006.3  |2 23 
049 |a UAMI 
100 1 |a Pattanayak, Santanu,  |e author. 
245 1 0 |a Intelligent projects using Python :  |b 9 real-world AI projects leveraging machine learning and deep learning with TensorFlow and Keras /  |c Santanu Pattanayak. 
264 1 |a Birmingham :  |b Packt,  |c [2019] 
264 4 |c ©2019 
300 |a 1 online resource (332 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Print version record. 
505 0 |a Cover; Title Page; Copyright and Credits; About Packt; Contributors; Table of Contents; Preface; Chapter 1: Foundations of Artificial Intelligence Based Systems; Neural networks; Neural activation units; Linear activation units; Sigmoid activation units; The hyperbolic tangent activation function; Rectified linear unit (ReLU); The softmax activation unit; The backpropagation method of training neural networks; Convolutional neural networks; Recurrent neural networks (RNNs); Long short-term memory (LSTM) cells; Generative adversarial networks; Reinforcement learning; Q-learning 
505 8 |a Deep Q-learning Transfer learning; Restricted Boltzmann machines; Autoencoders ; Summary; Chapter 2: Transfer Learning; Technical requirements; Introduction to transfer learning; Transfer learning and detecting diabetic retinopathy; The diabetic retinopathy dataset ; Formulating the loss function; Taking class imbalances into account; Preprocessing the images ; Additional data generation using affine transformation; Rotation ; Translation; Scaling ; Reflection; Additional image generation through affine transformation; Network architecture ; The VGG16 transfer learning network 
505 8 |a The InceptionV3 transfer learning networkThe ResNet50 transfer learning network; The optimizer and initial learning rate; Cross-validation; Model checkpoints based on validation log loss ; Python implementation of the training process; Dynamic mini batch creation during training ; Results from the categorical classification; Inference at testing time ; Performing regression instead of categorical classification ; Using the keras sequential utils as generator ; Summary; Chapter 3: Neural Machine Translation; Technical requirements; Rule-based machine translation; The analysis phase 
505 8 |a Lexical transfer phase Generation phase ; Statistical machine-learning systems; Language model ; Perplexity for language models; Translation model; Neural machine translation; The encoder-decoder model; Inference using the encoder-decoder model; Implementing a sequence-to-sequence neural translation machine; Processing the input data; Defining a model for neural machine translation; Loss function for the neural translation machine; Training the model; Building the inference model; Word vector embeddings; Embeddings layer; Implementing the embeddings-based NMT; Summary 
505 8 |a Chapter 4: Style Transfer in Fashion Industry using GANsTechnical requirements; DiscoGAN; CycleGAN; Learning to generate natural handbags from sketched outlines; Preprocess the Images; The generators of the DiscoGAN; The discriminators of the DiscoGAN; Building the network and defining the cost functions; Building the training process; Important parameter values for GAN training; Invoking the training; Monitoring the generator and the discriminator loss ; Sample images generated by DiscoGAN; Summary; Chapter 5: Video Captioning Application; Technical requirements 
500 |a CNNs and LSTMs in video captioning 
520 |a This book includes 9 projects on building smart and practical AI-based systems. These projects cover solutions to different domain-specific problems in healthcare, e-commerce and more. With this book, you will apply different machine learning and deep learning techniques and learn how to build your own intelligent applications for smart ... 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Artificial intelligence. 
650 0 |a Python (Computer program language) 
650 6 |a Intelligence artificielle. 
650 6 |a Python (Langage de programmation) 
650 7 |a artificial intelligence.  |2 aat 
650 7 |a Artificial intelligence  |2 fast 
650 7 |a Python (Computer program language)  |2 fast 
776 0 8 |i Print version:  |a Pattanayak, Santanu.  |t Intelligent Projects Using Python : 9 Real-World AI Projects Leveraging Machine Learning and Deep Learning with TensorFlow and Keras.  |d Birmingham : Packt Publishing Ltd, ©2019  |z 9781788996921 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2018969  |z Texto completo 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5675588 
938 |a EBSCOhost  |b EBSC  |n 2018969 
994 |a 92  |b IZTAP