Cargando…

Generative Adversarial Networks Projects : Build Next-Generation Generative Models Using TensorFlow and Keras.

In this book, we will use different complexities of datasets in order to build end-to-end projects. With every chapter, the level of complexity and operations will become advanced. It consists of 8 full-fledged projects covering approaches such as 3D-GAN, Age-cGAN, DCGAN, SRGAN, StackGAN, and CycleG...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Ahirwar, Kailash
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham : Packt Publishing Ltd, 2019.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBSCO_on1086098053
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 190216s2019 enk o 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d TEFOD  |d OCLCO  |d TEFOD  |d N$T  |d UKAHL  |d OCLCF  |d OCLCQ  |d NLW  |d K6U  |d OCLCQ  |d OCLCO  |d UKMGB  |d NZAUC  |d OCLCQ 
015 |a GBC216702  |2 bnb 
016 7 |a 019253761  |2 Uk 
020 |a 9781789134193  |q (electronic bk.) 
020 |a 1789134196  |q (electronic bk.) 
020 |z 9781789136678  |q print 
029 1 |a AU@  |b 000065066155 
029 1 |a UKMGB  |b 019253761 
029 1 |a AU@  |b 000070535683 
035 |a (OCoLC)1086098053 
037 |a 39C211E7-6FEF-4604-AF72-08AC6CF36D16  |b OverDrive, Inc.  |n http://www.overdrive.com 
050 4 |a Q325.5 
072 7 |a COM  |x 000000  |2 bisacsh 
082 0 4 |a 006.31  |2 23 
049 |a UAMI 
100 1 |a Ahirwar, Kailash. 
245 1 0 |a Generative Adversarial Networks Projects :  |b Build Next-Generation Generative Models Using TensorFlow and Keras. 
260 |a Birmingham :  |b Packt Publishing Ltd,  |c 2019. 
300 |a 1 online resource (310 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Print version record. 
505 0 |a Cover; Title Page; Copyright and Credits; About Packt; Contributors; Table of Contents; Preface; Chapter 1: Introduction to Generative Adversarial Networks; What is a GAN?; What is a generator network?; What is a discriminator network?; Training through adversarial play in GANs; Practical applications of GANs; The detailed architecture of a GAN; The architecture of the generator ; The architecture of the discriminator; Important concepts related to GANs; Kullback-Leibler divergence; Jensen-Shannon divergence; Nash equilibrium; Objective functions; Scoring algorithms; The inception score 
505 8 |a The Fréchet inception distanceVariants of GANs; Deep convolutional generative adversarial networks; StackGANs; CycleGANs; 3D-GANs; Age-cGANs; pix2pix; Advantages of GANs; Problems with training GANs; Mode collapse; Vanishing gradients; Internal covariate shift; Solving stability problems when training GANs; Feature matching; Mini-batch discrimination; Historical averaging; One-sided label smoothing; Batch normalization; Instance normalization; Summary; Chapter 2: 3D-GAN -- Generating Shapes Using GANs; Introduction to 3D-GANs; 3D convolutions; The architecture of a 3D-GAN 
505 8 |a The architecture of the generator networkThe architecture of the discriminator network; Objective function; Training 3D-GANs; Setting up a project; Preparing the data; Download and extract the dataset; Exploring the dataset; What is a voxel?; Loading and visualizing a 3D image; Visualizing a 3D image; A Keras implementation of a 3D-GAN; The generator network; The discriminator network; Training a 3D-GAN; Training the networks; Saving the models; Testing the models; Visualizing losses; Visualizing graphs; Hyperparameter optimization; Practical applications of 3D-GANs; Summary 
505 8 |a Chapter 3: Face Aging Using Conditional GANIntroducing cGANs for face aging; Understanding cGANs; The architecture of the Age-cGAN; The encoder network; The generator network; The discriminator network; Face recognition network; Stages of the Age-cGAN; Conditional GAN training; The training objective function; Initial latent vector approximation; Latent vector optimization; Setting up the project; Preparing the data; Downloading the dataset; Extracting the dataset; A Keras implementation of an Age-cGAN; The encoder network; The generator network; The discriminator network; Training the cGAN 
505 8 |a Training the cGANInitial latent vector approximation; Latent vector optimization; Visualizing the losses; Visualizing the graphs; Practical applications of Age-cGAN; Summary; Chapter 4: Generating Anime Characters Using DCGANs; Introducing to DCGANs; Architectural details of a DCGAN; Configuring the generator network; Configuring the discriminator network; Setting up the project; Downloading and preparing the anime characters dataset; Downloading the dataset; Exploring the dataset; Cropping and resizing images in the dataset; Implementing a DCGAN using Keras; Generator; Discriminator 
500 |a Training the DCGAN 
520 |a In this book, we will use different complexities of datasets in order to build end-to-end projects. With every chapter, the level of complexity and operations will become advanced. It consists of 8 full-fledged projects covering approaches such as 3D-GAN, Age-cGAN, DCGAN, SRGAN, StackGAN, and CycleGAN with real-world use cases. 
504 |a Includes bibliographical references. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Machine learning. 
650 0 |a Neural networks (Computer science) 
650 0 |a Artificial intelligence. 
650 2 |a Neural Networks, Computer 
650 2 |a Artificial Intelligence 
650 6 |a Apprentissage automatique. 
650 6 |a Réseaux neuronaux (Informatique) 
650 6 |a Intelligence artificielle. 
650 7 |a artificial intelligence.  |2 aat 
650 7 |a Artificial intelligence.  |2 bicssc 
650 7 |a Machine learning.  |2 bicssc 
650 7 |a Mathematical theory of computation.  |2 bicssc 
650 7 |a COMPUTERS  |x General.  |2 bisacsh 
650 7 |a Artificial intelligence.  |2 fast  |0 (OCoLC)fst00817247 
650 7 |a Machine learning.  |2 fast  |0 (OCoLC)fst01004795 
650 7 |a Neural networks (Computer science)  |2 fast  |0 (OCoLC)fst01036260 
776 0 8 |i Print version:  |a Ahirwar, Kailash.  |t Generative Adversarial Networks Projects : Build Next-Generation Generative Models Using TensorFlow and Keras.  |d Birmingham : Packt Publishing Ltd, ©2019  |z 9781789136678 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2018972  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n BDZ0039650232 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5675592 
938 |a EBSCOhost  |b EBSC  |n 2018972 
994 |a 92  |b IZTAP