Cargando…

Machine Learning Quick Reference : Quick and Essential Machine Learning Hacks for Training Smart Data Models.

Machine learning involves development and training of models used to predict future outcomes. This book is a practical guide to all the tips and tricks related to machine learning. It includes hands-on, easy to access techniques on topics like model selection, performance tuning, training neural net...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Kumar, Rahul
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham : Packt Publishing Ltd, 2019.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBSCO_on1086042416
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 190216s2019 enk ob 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d TEFOD  |d N$T  |d UKAHL  |d OCLCF  |d OCLCQ  |d NLW  |d K6U  |d OCLCO  |d UKMGB  |d OCLCQ  |d OCLCO  |d NZAUC  |d OCLCQ  |d PSYSI  |d OCLCQ  |d OCLCO 
015 |a GBC213288  |2 bnb 
016 7 |a 019253742  |2 Uk 
020 |a 9781788831611  |q (electronic bk.) 
020 |a 1788831616  |q (electronic bk.) 
020 |z 9781788830577  |q (print) 
029 1 |a AU@  |b 000065066023 
029 1 |a UKMGB  |b 019253742 
029 1 |a AU@  |b 000070435826 
035 |a (OCoLC)1086042416 
037 |a 7ABC99E0-7AD9-414B-9DA2-CCFCF09B4A73  |b OverDrive, Inc.  |n http://www.overdrive.com 
050 4 |a Q325.5 
072 7 |a COM  |x 000000  |2 bisacsh 
082 0 4 |a 006.31  |2 23 
049 |a UAMI 
100 1 |a Kumar, Rahul. 
245 1 0 |a Machine Learning Quick Reference :  |b Quick and Essential Machine Learning Hacks for Training Smart Data Models. 
260 |a Birmingham :  |b Packt Publishing Ltd,  |c 2019. 
300 |a 1 online resource (283 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Print version record. 
505 0 |a Cover; Title Page; Copyright and Credits; About Packt; Contributors; Table of Contents; Preface; Chapter 1: Quantifying Learning Algorithms; Statistical models; Learning curve; Machine learning; Wright's model; Curve fitting; Residual; Statistical modeling -- the two cultures of Leo Breiman; Training data development data -- test data; Size of the training, development, and test set; Bias-variance trade off; Regularization; Ridge regression (L2); Least absolute shrinkage and selection operator ; Cross-validation and model selection; K-fold cross-validation 
505 8 |a Model selection using cross-validation0.632 rule in bootstrapping; Model evaluation; Confusion matrix; Receiver operating characteristic curve; Area under ROC; H-measure; Dimensionality reduction; Summary; Chapter 2: Evaluating Kernel Learning; Introduction to vectors; Magnitude of the vector; Dot product; Linear separability; Hyperplanes ; SVM; Support vector; Kernel trick; Kernel; Back to Kernel trick; Kernel types; Linear kernel; Polynomial kernel; Gaussian kernel; SVM example and parameter optimization through grid search; Summary; Chapter 3: Performance in Ensemble Learning 
505 8 |a What is ensemble learning?Ensemble methods ; Bootstrapping; Bagging; Decision tree; Tree splitting; Parameters of tree splitting; Random forest algorithm; Case study; Boosting; Gradient boosting; Parameters of gradient boosting; Summary; Chapter 4: Training Neural Networks; Neural networks; How a neural network works; Model initialization; Loss function; Optimization; Computation in neural networks; Calculation of activation for H1; Backward propagation; Activation function; Types of activation functions; Network initialization; Backpropagation; Overfitting; Prevention of overfitting in NNs 
505 8 |a Vanishing gradient Overcoming vanishing gradient; Recurrent neural networks; Limitations of RNNs; Use case; Summary; Chapter 5: Time Series Analysis; Introduction to time series analysis; White noise; Detection of white noise in a series; Random walk; Autoregression; Autocorrelation; Stationarity; Detection of stationarity; AR model; Moving average model; Autoregressive integrated moving average; Optimization of parameters; AR model; ARIMA model; Anomaly detection; Summary; Chapter 6: Natural Language Processing; Text corpus; Sentences; Words; Bags of words; TF-IDF 
505 8 |a Executing the count vectorizerExecuting TF-IDF in Python; Sentiment analysis; Sentiment classification; TF-IDF feature extraction; Count vectorizer bag of words feature extraction; Model building count vectorization; Topic modeling ; LDA architecture; Evaluating the model; Visualizing the LDA; The Naive Bayes technique in text classification; The Bayes theorem; How the Naive Bayes classifier works; Summary; Chapter 7: Temporal and Sequential Pattern Discovery; Association rules; Apriori algorithm; Finding association rules; Frequent pattern growth; Frequent pattern tree growth; Validation 
500 |a Importing the library 
520 |a Machine learning involves development and training of models used to predict future outcomes. This book is a practical guide to all the tips and tricks related to machine learning. It includes hands-on, easy to access techniques on topics like model selection, performance tuning, training neural networks, time series analysis and a lot more. 
504 |a Includes bibliographical references. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Machine learning. 
650 6 |a Apprentissage automatique. 
650 7 |a Data capture & analysis.  |2 bicssc 
650 7 |a Mathematical theory of computation.  |2 bicssc 
650 7 |a Machine learning.  |2 bicssc 
650 7 |a Artificial intelligence.  |2 bicssc 
650 7 |a COMPUTERS  |x General.  |2 bisacsh 
650 7 |a Machine learning  |2 fast 
776 0 8 |i Print version:  |a Kumar, Rahul.  |t Machine Learning Quick Reference : Quick and Essential Machine Learning Hacks for Training Smart Data Models.  |d Birmingham : Packt Publishing Ltd, ©2019  |z 9781788830577 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2018975  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n BDZ0039650236 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5675581 
938 |a EBSCOhost  |b EBSC  |n 2018975 
994 |a 92  |b IZTAP