Cargando…

Ensemble Machine Learning Cookbook : Over 35 Practical Recipes to Explore Ensemble Machine Learning Techniques Using Python.

This book uses a recipe-based approach to showcase the power of machine learning algorithms to build ensemble models using Python libraries. Through this book, you will be able to pick up the code, understand in depth how it works, execute and implement it efficiently. This will be a desk reference...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Sarkar, Dipayan
Otros Autores: Natarajan, Vijayalakshmi
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham : Packt Publishing Ltd, 2019.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mi 4500
001 EBSCO_on1085226237
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 190209s2019 enk o 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d N$T  |d TEFOD  |d OCLCF  |d UKAHL  |d OCLCQ  |d K6U  |d NLW  |d OCLCO  |d UKMGB  |d OCLCO  |d OCLCQ  |d OCLCO 
015 |a GBC216701  |2 bnb 
016 7 |a 019253759  |2 Uk 
020 |a 1789132509 
020 |a 9781789132502  |q (electronic bk.) 
020 |z 9781789136609  |q print 
029 1 |a AU@  |b 000065066343 
029 1 |a CHNEW  |b 001040207 
029 1 |a CHVBK  |b 559038704 
029 1 |a UKMGB  |b 019253759 
029 1 |a AU@  |b 000069011211 
035 |a (OCoLC)1085226237 
037 |a 861EFEE8-8E67-4B9F-869E-DCEFC7917855  |b OverDrive, Inc.  |n http://www.overdrive.com 
050 4 |a Q325.5 
072 7 |a COM  |x 000000  |2 bisacsh 
082 0 4 |a 006.31  |2 23 
049 |a UAMI 
100 1 |a Sarkar, Dipayan. 
245 1 0 |a Ensemble Machine Learning Cookbook :  |b Over 35 Practical Recipes to Explore Ensemble Machine Learning Techniques Using Python. 
260 |a Birmingham :  |b Packt Publishing Ltd,  |c 2019. 
300 |a 1 online resource (327 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Print version record. 
505 0 |a Cover; Title Page; Copyright and Credits; About Packt; Foreword; Contributors; Preface; Table of Contents; Chapter 1: Get Closer to Your Data; Introduction; Data manipulation with Python; Getting ready; How to do it ... ; How it works ... ; There's more ... ; See also; Analyzing, visualizing, and treating missing values; How to do it ... ; How it works ... ; There's more ... ; See also; Exploratory data analysis; How to do it ... ; How it works ... ; There's more ... ; See also; Chapter 2: Getting Started with Ensemble Machine Learning; Introduction to ensemble machine learning; Max-voting; Getting ready 
505 8 |a How to do it ... How it works ... ; There's more ... ; Averaging; Getting ready; How to do it ... ; How it works ... ; Weighted averaging; Getting ready; How to do it ... ; How it works ... ; See also; Chapter 3: Resampling Methods; Introduction to sampling; Getting ready; How to do it ... ; How it works ... ; There's more ... ; See also; k-fold and leave-one-out cross-validation; Getting ready; How to do it ... ; How it works ... ; There's more ... ; See also; Bootstrapping; Getting ready; How to do it ... ; How it works ... ; See also; Chapter 4: Statistical and Machine Learning Algorithms; Technical requirements 
505 8 |a Multiple linear regressionGetting ready; How to do it ... ; How it works ... ; There's more ... ; See also; Logistic regression; Getting ready; How to do it ... ; How it works ... ; See also; Naive Bayes; Getting ready; How to do it ... ; How it works ... ; There's more ... ; See also; Decision trees; Getting ready; How to do it ... ; How it works ... ; There's more ... ; See also; Support vector machines; Getting ready; How to do it ... ; How it works ... ; There's more ... ; See also; Chapter 5: Bag the Models with Bagging; Introduction; Bootstrap aggregation; Getting ready; How to do it ... ; How it works ... ; See also 
505 8 |a Ensemble meta-estimatorsBagging classifiers; How to do it ... ; How it works ... ; There's more ... ; See also; Bagging regressors; Getting ready; How to do it ... ; How it works ... ; See also; Chapter 6: When in Doubt, Use Random Forests; Introduction to random forests; Implementing a random forest for predicting credit card defaults using scikit-learn; Getting ready; How to do it ... ; How it works ... ; There's more ... ; See also; Implementing random forest for predicting credit card defaults using H2O; Getting ready; How to do it ... ; How it works ... ; There's more ... ; See also 
505 8 |a Chapter 7: Boosting Model Performance with BoostingIntroduction to boosting; Implementing AdaBoost for disease risk prediction using scikit-learn; Getting ready; How to do it ... ; How it works ... ; There's more ... ; See also; Implementing a gradient boosting machine for disease risk prediction using scikit-learn; Getting ready; How to do it ... ; How it works ... ; There's more ... ; Implementing the extreme gradient boosting method for glass identification using XGBoost with scikit-learn ; Getting ready ... ; How to do it ... ; How it works ... ; There's more ... ; See also; Chapter 8: Blend It with Stacking 
500 |a Technical requirements 
520 |a This book uses a recipe-based approach to showcase the power of machine learning algorithms to build ensemble models using Python libraries. Through this book, you will be able to pick up the code, understand in depth how it works, execute and implement it efficiently. This will be a desk reference to implement a wide range of tasks and solve ... 
504 |a Includes bibliographical references. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Machine learning. 
650 0 |a Python (Computer program language) 
650 6 |a Apprentissage automatique. 
650 6 |a Python (Langage de programmation) 
650 7 |a Natural language & machine translation.  |2 bicssc 
650 7 |a Neural networks & fuzzy systems.  |2 bicssc 
650 7 |a Artificial intelligence.  |2 bicssc 
650 7 |a COMPUTERS  |x General.  |2 bisacsh 
650 7 |a Machine learning  |2 fast 
650 7 |a Python (Computer program language)  |2 fast 
700 1 |a Natarajan, Vijayalakshmi. 
776 0 8 |i Print version:  |a Sarkar, Dipayan.  |t Ensemble Machine Learning Cookbook : Over 35 Practical Recipes to Explore Ensemble Machine Learning Techniques Using Python.  |d Birmingham : Packt Publishing Ltd, ©2019  |z 9781789136609 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2016357  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n BDZ0039647798 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5667626 
938 |a EBSCOhost  |b EBSC  |n 2016357 
994 |a 92  |b IZTAP