|
|
|
|
LEADER |
00000cam a2200000Mu 4500 |
001 |
EBSCO_on1085176106 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr |n|---||||| |
008 |
190209s2019 xx o 000 0 eng d |
040 |
|
|
|a EBLCP
|b eng
|e pn
|c EBLCP
|d YDX
|d OCLCQ
|d UKAHL
|d N$T
|d OCLCO
|d OCLCF
|d OCLCO
|d K6U
|d OCLCQ
|d OCLCO
|
019 |
|
|
|a 1084503933
|a 1284933581
|
020 |
|
|
|a 1773615742
|
020 |
|
|
|a 9781773615745
|q (electronic bk.)
|
035 |
|
|
|a (OCoLC)1085176106
|z (OCoLC)1084503933
|z (OCoLC)1284933581
|
050 |
|
4 |
|a QA276
|
082 |
0 |
4 |
|a 001.422
|2 23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Raghavender, U. S.
|
245 |
1 |
0 |
|a Data Reduction and Analysis
|
260 |
|
|
|a Ashland :
|b Arcler Press,
|c 2019.
|
300 |
|
|
|a 1 online resource (280 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Cover; Half Title Page; Title Page; Copyright Page; About the Author; Dedication; Table of Contents; Preface; Chapter 1 Data Environment; 1.1 Introduction; 1.2 Python; 1.3 R -- Statistical Programming Language; 1.4 Bash Shell; 1.5 Inspect Data; Chapter 2 Statistics: A Primer; 2.1 Single Variable: Shape and Distribution; 2.2 Binomial Distribution; 2.3 Normal Distribution; 2.4 Poisson Distribution; 2.5 Discrete Uniform Distribution; 2.6 Continuous Uniform Distribution; 2.7 Conclusions; Chapter 3 Data Analysis -- Concepts; 3.1 Structured Data; 3.2 Rectangular Data; 3.3 Dataframes; 3.4 Graph Data
|
505 |
8 |
|
|a 3.5 Estimates Of Location3.6 Mean; 3.7 Median And Robust Estimates; 3.8 Estimates Of Variability; 3.9 Standard Deviation And Related Estimates; 3.10 Conclusions; Chapter 4 Data Science With Python And R; 4.1 Dataframe; 4.2 Reading The Files; 4.3 Indexing And Slicing; 4.4 Data Selection; 4.5 Function Mapping And Grouping; 4.6 Aggregate; 4.7 Conclusions; Chapter 5 Error Analysis; 5.1 Uncertainties In Data; 5.2 Propagation of Errors; 5.3 Conclusions; Chapter 6 Principal Component Analysis; 6.1 Preparing Our TB Data; 6.2 Using R For PCA; 6.3 Exploring Data Structure With K-Means Clustering
|
505 |
8 |
|
|a 6.4 Cluster Interpretation6.5 Centroids Comparison Chart; 6.6 A Second Level of Clustering; 6.7 Conclusions; Chapter 7 Cluster Analysis; 7.1 Cluster Analysis; 7.2 Data Preparation; 7.3 Types of Clustering; 7.4 Determine The Number of Clusters In K-Means Clustering; 7.5 Hierarchical Clustering (Agglomerative Clustering); 7.6 Clustering Algorithms; 7.7 Determine The Number of Clusters In Hierarchical Clustering; 7.8 Interpretation of Results; 7.9 Best Approach: Combination of Both Techniques; 7.10 Assess Clustering Tendency (Clusterability); 7.11 Determine The Optimal Number Of Clusters
|
505 |
8 |
|
|a 7.12 Clustering For Mixed Data7.13 Cluster Analysis (Numeric Variables) In R; 7.14 Conclusions; Chapter 8 Dimensionality Reduction; 8.1 Introduction; 8.2 Reduce Dimensions -- But Why?; 8.3 Remove Redundant Variables; 8.4 Random Forest; 8.5 Feature Selection With Random Forest; 8.6 Conclusions; Chapter 9 Regression; 9.1 Introduction; 9.2 When To Use Correlation and Regression; 9.3 Null Hypothesis; 9.4 Independent Vs Dependent Variables; 9.5 How The Test Works; 9.6 Linear Regression; 9.7 Standardized Coefficients; 9.8 Measures of Model Performance; 9.9 R Script: Linear Regression
|
505 |
8 |
|
|a 9.10 Understanding AIC and BIC9.11 Calculating Variance Inflation Factor (VIF); 9.12 K-Fold Cross-Validation; 9.13 Conclusions; Chapter 10 Sentiment Analysis; 10.1 Sentiment Analysis; 10.2 Sentiment Analysis With Machine Learning In R; 10.3 Sentiment Analysis For Tweets; 10.4 Conclusions; Chapter 11 Support Vector Machines; 11.1 Introducing Support Vector Machine (SVM; 11.2 Maximum Margin Classifiers; 11.3 Support Vector Machine Simplified; 11.4 SVM: Nonlinear Separable Data; 11.5 How SVM Works; 11.6 SVM -- Standardization; 11.7 Tuning Parameters of SVM
|
500 |
|
|
|a 11.8 R Code: Support Vector Machine (SVM
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a Data reduction.
|
650 |
|
0 |
|a Data mining.
|
650 |
|
6 |
|a Réduction des données (Statistique)
|
650 |
|
6 |
|a Exploration de données (Informatique)
|
650 |
|
7 |
|a Data mining
|2 fast
|
650 |
|
7 |
|a Data reduction
|2 fast
|
776 |
0 |
8 |
|i Print version:
|a Raghavender, U.S.
|t Data Reduction and Analysis.
|d Ashland : Arcler Press, ©2019
|
856 |
4 |
0 |
|u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2013944
|z Texto completo
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n BDZ0044473312
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL5655550
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 2013944
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 16023297
|
994 |
|
|
|a 92
|b IZTAP
|