Cargando…

Data Reduction and Analysis

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Raghavender, U. S.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Ashland : Arcler Press, 2019.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mu 4500
001 EBSCO_on1085176106
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |n|---|||||
008 190209s2019 xx o 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d YDX  |d OCLCQ  |d UKAHL  |d N$T  |d OCLCO  |d OCLCF  |d OCLCO  |d K6U  |d OCLCQ  |d OCLCO 
019 |a 1084503933  |a 1284933581 
020 |a 1773615742 
020 |a 9781773615745  |q (electronic bk.) 
035 |a (OCoLC)1085176106  |z (OCoLC)1084503933  |z (OCoLC)1284933581 
050 4 |a QA276 
082 0 4 |a 001.422  |2 23 
049 |a UAMI 
100 1 |a Raghavender, U. S. 
245 1 0 |a Data Reduction and Analysis 
260 |a Ashland :  |b Arcler Press,  |c 2019. 
300 |a 1 online resource (280 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Print version record. 
505 0 |a Cover; Half Title Page; Title Page; Copyright Page; About the Author; Dedication; Table of Contents; Preface; Chapter 1 Data Environment; 1.1 Introduction; 1.2 Python; 1.3 R -- Statistical Programming Language; 1.4 Bash Shell; 1.5 Inspect Data; Chapter 2 Statistics: A Primer; 2.1 Single Variable: Shape and Distribution; 2.2 Binomial Distribution; 2.3 Normal Distribution; 2.4 Poisson Distribution; 2.5 Discrete Uniform Distribution; 2.6 Continuous Uniform Distribution; 2.7 Conclusions; Chapter 3 Data Analysis -- Concepts; 3.1 Structured Data; 3.2 Rectangular Data; 3.3 Dataframes; 3.4 Graph Data 
505 8 |a 3.5 Estimates Of Location3.6 Mean; 3.7 Median And Robust Estimates; 3.8 Estimates Of Variability; 3.9 Standard Deviation And Related Estimates; 3.10 Conclusions; Chapter 4 Data Science With Python And R; 4.1 Dataframe; 4.2 Reading The Files; 4.3 Indexing And Slicing; 4.4 Data Selection; 4.5 Function Mapping And Grouping; 4.6 Aggregate; 4.7 Conclusions; Chapter 5 Error Analysis; 5.1 Uncertainties In Data; 5.2 Propagation of Errors; 5.3 Conclusions; Chapter 6 Principal Component Analysis; 6.1 Preparing Our TB Data; 6.2 Using R For PCA; 6.3 Exploring Data Structure With K-Means Clustering 
505 8 |a 6.4 Cluster Interpretation6.5 Centroids Comparison Chart; 6.6 A Second Level of Clustering; 6.7 Conclusions; Chapter 7 Cluster Analysis; 7.1 Cluster Analysis; 7.2 Data Preparation; 7.3 Types of Clustering; 7.4 Determine The Number of Clusters In K-Means Clustering; 7.5 Hierarchical Clustering (Agglomerative Clustering); 7.6 Clustering Algorithms; 7.7 Determine The Number of Clusters In Hierarchical Clustering; 7.8 Interpretation of Results; 7.9 Best Approach: Combination of Both Techniques; 7.10 Assess Clustering Tendency (Clusterability); 7.11 Determine The Optimal Number Of Clusters 
505 8 |a 7.12 Clustering For Mixed Data7.13 Cluster Analysis (Numeric Variables) In R; 7.14 Conclusions; Chapter 8 Dimensionality Reduction; 8.1 Introduction; 8.2 Reduce Dimensions -- But Why?; 8.3 Remove Redundant Variables; 8.4 Random Forest; 8.5 Feature Selection With Random Forest; 8.6 Conclusions; Chapter 9 Regression; 9.1 Introduction; 9.2 When To Use Correlation and Regression; 9.3 Null Hypothesis; 9.4 Independent Vs Dependent Variables; 9.5 How The Test Works; 9.6 Linear Regression; 9.7 Standardized Coefficients; 9.8 Measures of Model Performance; 9.9 R Script: Linear Regression 
505 8 |a 9.10 Understanding AIC and BIC9.11 Calculating Variance Inflation Factor (VIF); 9.12 K-Fold Cross-Validation; 9.13 Conclusions; Chapter 10 Sentiment Analysis; 10.1 Sentiment Analysis; 10.2 Sentiment Analysis With Machine Learning In R; 10.3 Sentiment Analysis For Tweets; 10.4 Conclusions; Chapter 11 Support Vector Machines; 11.1 Introducing Support Vector Machine (SVM; 11.2 Maximum Margin Classifiers; 11.3 Support Vector Machine Simplified; 11.4 SVM: Nonlinear Separable Data; 11.5 How SVM Works; 11.6 SVM -- Standardization; 11.7 Tuning Parameters of SVM 
500 |a 11.8 R Code: Support Vector Machine (SVM 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Data reduction. 
650 0 |a Data mining. 
650 6 |a Réduction des données (Statistique) 
650 6 |a Exploration de données (Informatique) 
650 7 |a Data mining  |2 fast 
650 7 |a Data reduction  |2 fast 
776 0 8 |i Print version:  |a Raghavender, U.S.  |t Data Reduction and Analysis.  |d Ashland : Arcler Press, ©2019 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2013944  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n BDZ0044473312 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5655550 
938 |a EBSCOhost  |b EBSC  |n 2013944 
938 |a YBP Library Services  |b YANK  |n 16023297 
994 |a 92  |b IZTAP