|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
EBSCO_on1083630583 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
190123s2019 gw fod z000 0 eng d |
040 |
|
|
|a DEGRU
|b eng
|e rda
|e pn
|c DEGRU
|d EBLCP
|d N$T
|d YDXIT
|d OCLCF
|d OCLCQ
|d OCLCO
|d OCLCQ
|d DEGRU
|
020 |
|
|
|a 9783110493603
|q (electronic book)
|
020 |
|
|
|a 3110493608
|q (electronic book)
|
020 |
|
|
|a 9783110496369
|
020 |
|
|
|a 3110496364
|
024 |
7 |
|
|a 10.1515/9783110496369
|2 doi
|
035 |
|
|
|a (OCoLC)1083630583
|
050 |
|
4 |
|a Q342
|b .C38 2019
|
072 |
|
7 |
|a BUS021000
|2 bisacsh
|
072 |
|
7 |
|a COM018000
|2 bisacsh
|
072 |
|
7 |
|a COM021030
|2 bisacsh
|
072 |
|
7 |
|a MAT003000
|2 bisacsh
|
072 |
|
7 |
|a MAT029000
|2 bisacsh
|
072 |
|
7 |
|a SOC002000
|2 bisacsh
|
072 |
|
7 |
|a MAT
|x 039000
|2 bisacsh
|
072 |
|
7 |
|a MAT
|x 023000
|2 bisacsh
|
072 |
|
7 |
|a MAT
|x 026000
|2 bisacsh
|
082 |
0 |
4 |
|a 510
|2 23
|
084 |
|
|
|a SK 990
|2 rvk
|0 (DE-625)rvk/143278:
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Cattani, Carlo,
|e author.
|
245 |
1 |
0 |
|a Computational methods for data analysis /
|c Yeliz Karaca, Carlo Cattani.
|
264 |
|
1 |
|a Berlin ;
|a Boston :
|b Walter de Gruyter GmbH,
|c [2019]
|
300 |
|
|
|a 1 online resource
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a text file
|
347 |
|
|
|b PDF
|
490 |
0 |
|
|a De Gruyter STEM
|
505 |
0 |
0 |
|t Frontmatter --
|t Preface --
|t Acknowledgment --
|t Contents --
|t 1. Introduction --
|t 2. Dataset --
|t 3. Data preprocessing and model evaluation --
|t 4. Algorithms --
|t 5. Linear model and multilinear model --
|t 6. Decision Tree --
|t 7. Naive Bayesian classifier --
|t 8. Support vector machines algorithms --
|t 9. k-Nearest neighbor algorithm --
|t 10. Artificial neural networks algorithm --
|t 11. Fractal and multifractal methods with ANN --
|t Index
|
546 |
|
|
|a In English.
|
588 |
0 |
|
|a Online resource; title from digital title page (viewed on February 19, 2019).
|
520 |
|
|
|a This graduate text covers a variety of mathematical and statistical tools for the analysis of big data coming from biology, medicine and economics. Neural networks, Markov chains, tools from statistical physics and wavelet analysis are used to develop efficient computational algorithms, which are then used for the processing of real-life data using Matlab.
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a Computational intelligence.
|
650 |
|
0 |
|a Electronic data processing.
|
650 |
|
6 |
|a Intelligence informatique.
|
650 |
|
7 |
|a MATHEMATICS
|x Essays.
|2 bisacsh
|
650 |
|
7 |
|a MATHEMATICS
|x Pre-Calculus.
|2 bisacsh
|
650 |
|
7 |
|a MATHEMATICS
|x Reference.
|2 bisacsh
|
650 |
|
7 |
|a Computational intelligence.
|2 fast
|0 (OCoLC)fst00871995
|
650 |
|
7 |
|a Electronic data processing.
|2 fast
|0 (OCoLC)fst00906956
|
700 |
1 |
|
|a Karaca, Yeliz,
|e author.
|
776 |
0 |
8 |
|i Print version:
|z 9783110493603
|
776 |
0 |
8 |
|i Print version:
|z 9783110496352
|
856 |
4 |
0 |
|u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2012083
|z Texto completo
|
938 |
|
|
|a De Gruyter
|b DEGR
|n 9783110496369
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL5672614
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 2012083
|
994 |
|
|
|a 92
|b IZTAP
|