Cargando…

Go Machine Learning Projects : Eight Projects Demonstrating End-To-end Machine Learning and Predictive Analytics Applications in Go.

Go is a highly preferred language for machine learning. The code is close to how it's actually executed in the machine. Over the course of this book, you will learn how to express complex ideas found in machine learning literature and implement them. You will also learn how to structure problem...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Chew, Xuanyi
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham : Packt Publishing Ltd, 2018.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mi 4500
001 EBSCO_on1078997527
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |n|---|||||
008 181215s2018 enk o 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d MERUC  |d UKAHL  |d OCLCQ  |d RDF  |d OCLCO  |d OCLCF  |d OCLCQ  |d N$T  |d OCLCQ  |d NLW  |d K6U  |d UKMGB  |d OCLCO  |d OCLCQ  |d PSYSI  |d OCLCQ 
015 |a GBC212981  |2 bnb 
016 7 |a 019176848  |2 Uk 
020 |a 1788995198 
020 |a 9781788995191  |q (electronic bk.) 
020 |z 9781788993401  |q print 
029 1 |a AU@  |b 000065065996 
029 1 |a UKMGB  |b 019176848 
029 1 |a AU@  |b 000070516183 
035 |a (OCoLC)1078997527 
037 |a 9781788995191  |b Packt Publishing 
050 4 |a Q325.5  |b .C449 2018 
082 0 4 |a 006.31  |2 23 
049 |a UAMI 
100 1 |a Chew, Xuanyi. 
245 1 0 |a Go Machine Learning Projects :  |b Eight Projects Demonstrating End-To-end Machine Learning and Predictive Analytics Applications in Go. 
260 |a Birmingham :  |b Packt Publishing Ltd,  |c 2018. 
300 |a 1 online resource (339 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Print version record. 
505 0 |a Cover; Title Page; Copyright and Credits; About Packt; Contributors; Table of Contents; Preface; Chapter 1: How to Solve All Machine Learning Problems; What is a problem? ; What is an algorithm? ; What is machine learning? ; Do you need machine learning?; The general problem solving process; What is a model?; What is a good model?; On writing and chapter organization ; Why Go? ; Quick start; Functions; Variables; Values ; Types ; Methods ; Interfaces; Packages and imports; Let's Go! ; Chapter 2: Linear Regression -- House Price Prediction; The project; Exploratory data analysis 
505 8 |a Ingestion and indexingJanitorial work; Encoding categorical data; Handling bad numbers; Final requirement; Writing the code; Further exploratory work; The conditional expectation functions; Skews; Multicollinearity; Standardization; Linear regression; The regression; Cross-validation; Running the regression; Discussion and further work; Summary; Chapter 3: Classification -- Spam Email Detection; The project ; Exploratory data analysis ; Tokenization; Normalizing and lemmatizing; Stopwords; Ingesting the data; Handling errors; The classifier; Naive Bayes; TF-IDF ; Conditional probability 
505 8 |a FeaturesBayes' theorem; Implementating the classifier; Class; Alternative class design; Classifier part II; Putting it all together; Summary; Chapter 4: Decomposing CO2 Trends Using Time Series Analysis; Exploratory data analysis; Downloading from non-HTTP sources; Handling non-standard data; Dealing with decimal dates; Plotting; Styling; Decomposition; STL; LOESS; The algorithm; Using STL; How to lie with statistics; More plotting; A primer on Gonum plots; The residuals plotter; Combining plots; Forecasting; Holt-Winters; Summary; References 
505 8 |a Chapter 5: Clean Up Your Personal Twitter Timeline by Clustering TweetsThe project ; K-means ; DBSCAN; Data acquisition; Exploratory data analysis; Data massage; The processor ; Preprocessing a single word ; Normalizing a string; Preprocessing stopwords; Preprocessing Twitter entities ; Processing a single tweet ; Clustering ; Clustering with K-means ; Clustering with DBSCAN ; Clustering with DMMClust ; Real data; The program ; Tweaking the program; Tweaking distances ; Tweaking the preprocessing step ; Summary; Chapter 6: Neural Networks -- MNIST Handwriting Recognition; A neural network 
505 8 |a Emulating a neural networkLinear algebra 101; Exploring activation functions; Learning; The project; Gorgonia; Getting the data; Acceptable format; From images to a matrix; What is a tensor?; From labels to one-hot vectors; Visualization; Preprocessing; Building a neural network; Feed forward; Handling errors with maybe; Explaining the feed forward function; Costs; Backpropagation; Training the neural network; Cross-validation; Summary; Chapter 7: Convolutional Neural Networks -- MNIST Handwriting Recognition; Everything you know about neurons is wrong ; Neural networks -- a redux; Gorgonia 
500 |a Why? 
520 |a Go is a highly preferred language for machine learning. The code is close to how it's actually executed in the machine. Over the course of this book, you will learn how to express complex ideas found in machine learning literature and implement them. You will also learn how to structure problems to solve them using machine learning with Go. 
504 |a Includes bibliographical references. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Machine learning. 
650 6 |a Apprentissage automatique. 
650 7 |a Artificial intelligence.  |2 bicssc 
650 7 |a Machine learning.  |2 bicssc 
650 7 |a Neural networks & fuzzy systems.  |2 bicssc 
650 7 |a Mathematical theory of computation.  |2 bicssc 
650 7 |a Computers  |x Intelligence (AI) & Semantics.  |2 bisacsh 
650 7 |a Computers  |x Neural Networks.  |2 bisacsh 
650 7 |a Computers  |x Machine Theory.  |2 bisacsh 
650 7 |a Machine learning.  |2 fast  |0 (OCoLC)fst01004795 
776 0 8 |i Print version:  |a Chew, Xuanyi.  |t Go Machine Learning Projects : Eight Projects Demonstrating End-To-end Machine Learning and Predictive Analytics Applications in Go.  |d Birmingham : Packt Publishing Ltd, ©2018  |z 9781788993401 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1950564  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH35657766 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5609743 
938 |a EBSCOhost  |b EBSC  |n 1950564 
994 |a 92  |b IZTAP