Cargando…

Foundations of probabilistic logic programming : languages, semantics, inference and learning /

Probabilistic Logic Programming extends Logic Programming by enabling the representation of uncertain information by means of probability theory. Probabilistic Logic Programming is at the intersection of two wider research fields: the integration of logic and probability and Probabilistic Programmin...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Riguzzi, Fabrizio (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Gistrup, Denmark : River Publishers, [2018]
Colección:River Publishers series in software engineering.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Foreword xi
  • Preface xiii
  • Acknowledgements xv
  • List of Figures xvii
  • List of Tables xxi
  • List of Examples xxiii
  • List of Definitions xxvii
  • List of Theorems xxix
  • List of Abbreviations xxxi
  • 1 Preliminaries 1
  • 1.1 Orders, Lattices, Ordinals 1
  • 1.2 Mappings and Fixpoints 3
  • 1.3 Logic Programming 4
  • 1.4 Semantics for Normal Logic Programs 13
  • 1.4.1 Program Completion 13
  • 1.4.2 Well-Founded Semantics 15
  • 1.4.3 Stable Model Semantics 21
  • 1.5 Probability Theory 23
  • 1.6 Probabilistic Graphical Models 32
  • 2 Probabilistic Logic Programming Languages 41
  • 2.1 Languages with the Distribution Semantics 41
  • 2.1.1 Logic Programs with Annotated Disjunctions 42
  • 2.1.2 ProbLog 43
  • 2.1.3 Probabilistic Horn Abduction 43
  • 2.1.4 PRISM 44
  • 2.2 The Distribution Semantics for Programs Without Function Symbols 45
  • 2.3 Examples of Programs 50
  • 2.4 Equivalence of Expressive Power 56
  • 2.5 Translation to Bayesian Networks 58
  • 2.6 Generality of the Distribution Semantics 62
  • 2.7 Extensions of the Distribution Semantics 64
  • 2.8 CP-Logic 66
  • 2.9 Semantics for Non-Sound Programs 71
  • 2.10 KBMC Probabilistic Logic Programming Languages 76
  • 2.10.1 Bayesian Logic Programs 76
  • 2.10.2 CLP(BN) 76
  • 2.10.3 The Prolog Factor Language 79
  • 2.11 Other Semantics for Probabilistic Logic Programming 80
  • 2.11.1 Stochastic Logic Programs 81
  • 2.11.2 ProPPR 82
  • 2.12 Other Semantics for Probabilistic Logics 84
  • 2.12.1 Nilsson's Probabilistic Logic 84
  • 2.12.2 Markov Logic Networks 84
  • 2.12.2.1 Encoding Markov Logic Networks with Probabilistic Logic Programming 85
  • 2.12.3 Annotated Probabilistic Logic Programs 88
  • 3 Semantics with Function Symbols 91
  • 3.1 The Distribution Semantics for Programs with Function Symbols 92
  • 3.2 Infinite Covering Set of Explanations 97
  • 3.3 Comparison with Sato and Kameya's Definition 110
  • 4 Semantics for Hybrid Programs 115
  • 4.1 Hybrid ProbLog 115
  • 4.2 Distributional Clauses 118
  • 4.3 Extended PRISM 124.
  • 4.4 cplint Hybrid Programs 126
  • 4.5 Probabilistic Constraint Logic Programming 130
  • 4.5.1 Dealing with Imprecise Probability Distributions 135
  • 5 Exact Inference 145
  • 5.1 PRISM 146
  • 5.2 Knowledge Compilation 150
  • 5.3 ProbLog1
  • 151
  • 5.4 cplint 155
  • 5.5 SLGAD 157
  • 5.6 PITA 158
  • 5.7 ProbLog2
  • 163
  • 5.8 TP Compilation 176
  • 5.9 Modeling Assumptions in PITA 178
  • 5.9.1 PITA(OPT) 181
  • 5.9.2 MPE with PITA 186
  • 5.10 Inference for Queries with an Infinite Number of Explanations 186
  • 5.11 Inference for Hybrid Programs 187
  • 6 Lifted Inference 195
  • 6.1 Preliminaries on Lifted Inference 195
  • 6.1.1 Variable Elimination 197
  • 6.1.2 GC-FOVE 201
  • 6.2 LP2
  • 202
  • 6.2.1 Translating ProbLog into PFL 202
  • 6.3 Lifted Inference with Aggregation Parfactors 205
  • 6.4 Weighted First-Order Model Counting 207
  • 6.5 Cyclic Logic Programs 210
  • 6.6 Comparison of the Approaches 210
  • 7 Approximate Inference 213
  • 7.1 ProbLog1
  • 213
  • 7.1.1 Iterative Deepening 213
  • 7.1.2 k-best 215
  • 7.1.3 Monte Carlo 216
  • 7.2 MCINTYRE 218
  • 7.3 Approximate Inference for Queries with an Infinite Number of Explanations 221
  • 7.4 Conditional Approximate Inference 222
  • 7.5 Approximate Inference by Sampling for Hybrid Programs 223
  • 7.6 Approximate Inference with Bounded Error for Hybrid Programs 226
  • 7.7 k-Optimal 229
  • 7.8 Explanation-Based Approximate Weighted Model Counting 231
  • 7.9 Approximate Inference with TP -compilation 233
  • 7.10 DISTR and EXP Tasks 234
  • 8 Non-Standard Inference 239
  • 8.1 Possibilistic Logic Programming 239
  • 8.2 Decision-Theoretic ProbLog 241
  • 8.3 Algebraic ProbLog 250
  • 9 Parameter Learning 259
  • 9.1 PRISM Parameter Learning 259
  • 9.2 LLPAD and ALLPAD Parameter Learning 265
  • 9.3 LeProbLog 267
  • 9.4 EMBLEM 270
  • 9.5 ProbLog2 Parameter Learning 280
  • 9.6 Parameter Learning for Hybrid Programs 282
  • 10 Structure Learning 283
  • 10.1 Inductive Logic Programming 283
  • 10.2 LLPAD and ALLPAD Structure Learning 287.
  • 10.3 ProbLog Theory Compression 289
  • 10.4 ProbFOIL and ProbFOIL+ 290
  • 10.5 SLIPCOVER 296
  • 10.5.1 The Language Bias 296
  • 10.5.2 Description of the Algorithm 296
  • 10.5.2.1 Function INITIALBEAMS 298
  • 10.5.2.2 Beam Search with Clause Refinements 300
  • 10.5.3 Execution Example 301
  • 10.6 Examples of Datasets 304
  • 11 cplint Examples 305
  • 11.1 cplint Commands 305
  • 11.2 Natural Language Processing 309
  • 11.2.1 Probabilistic Context-Free Grammars 309
  • 11.2.2 Probabilistic Left Corner Grammars 310
  • 11.2.3 Hidden Markov Models 311
  • 11.3 Drawing Binary Decision Diagrams 313
  • 11.4 Gaussian Processes 314
  • 11.5 Dirichlet Processes 318
  • 11.5.1 The Stick-Breaking Process 319
  • 11.5.2 The Chinese Restaurant Process 322
  • 11.5.3 Mixture Model 324
  • 11.6 Bayesian Estimation 326
  • 11.7 Kalman Filter 327
  • 11.8 Stochastic Logic Programs 330
  • 11.9 Tile Map Generation 332
  • 11.10 Markov Logic Networks 334
  • 11.11 Truel 335
  • 11.12 Coupon Collector Problem 339
  • 11.13 One-Dimensional Random Walk 341
  • 11.14 Latent Dirichlet Allocation 342
  • 11.15 The Indian GPA Problem 346
  • 11.16 Bongard Problems 348
  • 12 Conclusions 351
  • References 353
  • Index 375
  • About the Author 387.