Cargando…

Mastering Predictive Analytics with Scikit-Learn and TensorFlow : Implement Machine Learning Techniques to Build Advanced Predictive Models Using Python.

In this book, you will find a range of methods to improve the performance of almost any predictive model, from ensemble methods to dimensionality reduction and cross-validation. You will learn the tools to produce advanced predictive models. In addition, you will dive into the exiting field of Deep...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Fuentes, Alvaro
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham : Packt Publishing Ltd, 2018.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mi 4500
001 EBSCO_on1056906409
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 181013s2018 enk o 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d TEFOD  |d LVT  |d OCLCO  |d OCLCF  |d YDX  |d OCLCQ  |d UKAHL  |d OCLCQ  |d N$T  |d NLW  |d K6U  |d OCLCO  |d OCLCQ  |d PSYSI  |d OCLCQ 
019 |a 1056479440 
020 |a 9781789612240  |q (electronic bk.) 
020 |a 1789612241  |q (electronic bk.) 
029 1 |a AU@  |b 000065065944 
035 |a (OCoLC)1056906409  |z (OCoLC)1056479440 
037 |a 1A98563A-0816-40E9-8B0D-74B69167723F  |b OverDrive, Inc.  |n http://www.overdrive.com 
050 4 |a Q325.5 .F846 2018 
082 0 4 |a 006.31 
049 |a UAMI 
100 1 |a Fuentes, Alvaro. 
245 1 0 |a Mastering Predictive Analytics with Scikit-Learn and TensorFlow :  |b Implement Machine Learning Techniques to Build Advanced Predictive Models Using Python. 
260 |a Birmingham :  |b Packt Publishing Ltd,  |c 2018. 
300 |a 1 online resource (149 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Print version record. 
505 0 |a Cover; Title Page; Copyright and Credits; Packt Upsell; Contributor; Table of Contents; Preface; Chapter 1: Ensemble Methods for Regression and Classification; Ensemble methods and their working; Bootstrap sampling; Bagging; Random forests; Boosting; Ensemble methods for regression; The diamond dataset; Training different regression models; KNN model; Bagging model; Random forests model; Boosting model; Using ensemble methods for classification; Predicting a credit card dataset ; Training different regression models; Logistic regression model; Bagging model; Random forest model. 
505 8 |a Boosting modelSummary; Chapter 2: Cross-validation and Parameter Tuning; Holdout cross-validation; K-fold cross-validation; Implementing k-fold cross-validation; Comparing models with k-fold cross-validation; Introduction to hyperparameter tuning; Exhaustive grid search; Hyperparameter tuning in scikit-learn; Comparing tuned and untuned models; Summary; Chapter 3: Working with Features; Feature selection methods ; Removing dummy features with low variance; Identifying important features statistically; Recursive feature elimination; Dimensionality reduction and PCA; Feature engineering. 
505 8 |a Creating new featuresImproving models with feature engineering; Training your model; Reducible and irreducible error; Summary; Chapter 4: Introduction to Artificial Neural Networks and TensorFlow; Introduction to ANNs; Perceptrons; Multilayer perceptron; Elements of a deep neural network model; Deep learning; Elements of an MLP model; Introduction to TensorFlow; TensorFlow installation; Core concepts in TensorFlow; Tensors; Computational graph; Summary; Chapter 5: Predictive Analytics with TensorFlow and Deep Neural Networks; Predictions with TensorFlow; Introduction to the MNIST dataset. 
505 8 |a Building classification models using MNIST datasetElements of the DNN model; Building the DNN; Reading the data; Defining the architecture; Placeholders for inputs and labels; Building the neural network; The loss function; Defining optimizer and training operations; Training strategy and valuation of accuracy of the classification; Running the computational graph; Regression with Deep Neural Networks (DNN); Elements of the DNN model; Building the DNN; Reading the data; Objects for modeling; Training strategy; Input pipeline for the DNN; Defining the architecture. 
505 8 |a Placeholders for input values and labelsBuilding the DNN; The loss function; Defining optimizer and training operations; Running the computational graph; Classification with DNNs; Exponential linear unit activation function; Classification with DNNs; Elements of the DNN model; Building the DNN; Reading the data; Producing the objects for modeling; Training strategy; Input pipeline for DNN; Defining the architecture; Placeholders for inputs and labels; Building the neural network; The loss function; Evaluation nodes; Optimizer and the training operation; Run the computational graph. 
500 |a Evaluating the model with a set threshold. 
520 |a In this book, you will find a range of methods to improve the performance of almost any predictive model, from ensemble methods to dimensionality reduction and cross-validation. You will learn the tools to produce advanced predictive models. In addition, you will dive into the exiting field of Deep Learning using TensorFlow. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Data mining. 
650 0 |a Big data. 
650 0 |a Decision making  |x Data processing. 
650 0 |a Application software  |x Development. 
650 0 |a Python (Computer program language) 
650 2 |a Data Mining 
650 6 |a Exploration de données (Informatique) 
650 6 |a Données volumineuses. 
650 6 |a Prise de décision  |x Informatique. 
650 6 |a Logiciels d'application  |x Développement. 
650 6 |a Python (Langage de programmation) 
650 7 |a Information theory.  |2 bicssc 
650 7 |a Computer modelling & simulation.  |2 bicssc 
650 7 |a Natural language & machine translation.  |2 bicssc 
650 7 |a Information architecture.  |2 bicssc 
650 7 |a Computers  |x Natural Language Processing.  |2 bisacsh 
650 7 |a Computers  |x Computer Simulation.  |2 bisacsh 
650 7 |a Computers  |x Information Theory.  |2 bisacsh 
650 7 |a Application software  |x Development.  |2 fast  |0 (OCoLC)fst00811707 
650 7 |a Big data.  |2 fast  |0 (OCoLC)fst01892965 
650 7 |a Data mining.  |2 fast  |0 (OCoLC)fst00887946 
650 7 |a Decision making  |x Data processing.  |2 fast  |0 (OCoLC)fst00889041 
650 7 |a Python (Computer program language)  |2 fast  |0 (OCoLC)fst01084736 
776 0 8 |i Print version:  |a Fuentes, Alvaro.  |t Mastering Predictive Analytics with Scikit-Learn and TensorFlow : Implement Machine Learning Techniques to Build Advanced Predictive Models Using Python.  |d Birmingham : Packt Publishing Ltd, ©2018  |z 9781789617740 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1905995  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n BDZ0037799358 
938 |a EBL - Ebook Library  |b EBLB  |n EBL5532295 
938 |a YBP Library Services  |b YANK  |n 15738737 
938 |a EBSCOhost  |b EBSC  |n 1905995 
994 |a 92  |b IZTAP