Cargando…

Value-Based Planning for Teams of Agents in Stochastic Partially Observable Environments.

Annotation

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Oliehoek, Frans (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam : Vossiupers UvA [Imprint] Amsterdam University Press. Feb. 2010
Colección:UvA Proefschriften Ser.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000M 4500
001 EBSCO_on1055398748
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |n|||||||||
008 100607e20100207ne o 000 0 eng d
040 |a VT2  |b eng  |e pn  |c VT2  |d OCLCQ  |d WYU  |d VT2  |d VLY  |d OCLCO  |d OCLCF  |d OCLCO  |d OCLCQ 
019 |a 1264747736 
020 |a 9789056296100 
020 |a 9056296108  |q (Trade Paper) 
024 3 |a 9789056296100 
035 |a (OCoLC)1055398748  |z (OCoLC)1264747736 
037 |b 00118848 
050 4 |a QA39.3  |b .O45 2010 
082 0 4 |a 510 
049 |a UAMI 
100 1 |a Oliehoek, Frans,  |e author. 
245 1 0 |a Value-Based Planning for Teams of Agents in Stochastic Partially Observable Environments. 
260 |b Vossiupers UvA [Imprint]  |c Feb. 2010  |a Amsterdam :  |b Amsterdam University Press. 
300 |a 1 online resource (222 pages). 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a UvA Proefschriften Ser. 
520 8 |a Annotation  |b A key requirement of decision support systems is the ability to reason about uncertainty. This is a complex problem, especially when multiple decision makers are involved. For instance, consider a team of fire fighting agents whose goal is to extinguish a large fire in a residential area using only local observations. In this case, the environment is stochastic because the agents may be uncertain with respect to: 1) the effect of their actions, 2) the true state of the environment, and 3) the actions the other agents take. These uncertainties render the problem computationally intractable. In this thesis such decision-making problems are formalized using a stochastic discrete-time model called decentralized partially observable Markov decision process (Dec-POMDP). The first part of this thesis describes a value-based (i.e. based on value functions) approach for Dec-POMDPs, making use of Bayesian games. In the second part, different forms of structure in this approach are identified and exploited to realize better scaling behavior. This title can be previewed in Google Books - http://books.google.com/books?vid=ISBN9789056296100. 
521 |a Scholarly & Professional  |b Amsterdam University Press. 
505 0 |a Introduction; Decision-Theoretic Planning for Teams of Agents; Optimal Value Functions for Dec-POMDPs; Approximate Value Functions & Heuristic Policy Search; Factored Dec-POMDPs: Exploiting Locality of Interaction; Lossless Clustering of Histories; Conclusions and Discussion; Summary; Samenvatting; Problem Specifications; Immediate Reward Value Function Formulations; Formalization of Regression to Factored Q-Value Functions; Proofs; Bibliography; Acknowledgments 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Mathematics. 
650 2 |a Mathematics 
650 4 |a Mathematics. 
650 4 |a Mathematics  |x General. 
650 6 |a Mathématiques. 
650 7 |a Mathematics  |2 fast  |0 (OCoLC)fst01012163 
830 0 |a UvA Proefschriften Ser. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=324576  |z Texto completo 
994 |a 92  |b IZTAP