Cargando…

Yakov Berkovich; Zvonimir Janko.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Berkovich, Yakov G.
Otros Autores: Janko, Zvonimir
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin/Boston : De Gruyter, Inc., 2018.
Colección:De Gruyter Expositions in Mathematics Ser.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mu 4500
001 EBSCO_on1054067465
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |n|---|||||
008 180922s2018 mau o 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d YDX  |d STF  |d OCLCF  |d OCLCQ  |d N$T  |d OCLCO  |d K6U  |d OCLCQ  |d OCLCO 
066 |c (S 
019 |a 1052782971  |a 1054367921 
020 |a 3110533146 
020 |a 9783110533149  |q (electronic bk.) 
029 1 |a AU@  |b 000065431316 
029 1 |a DKDLA  |b 820120-katalog:999934322105765 
035 |a (OCoLC)1054067465  |z (OCoLC)1052782971  |z (OCoLC)1054367921 
050 4 |a QA177  |b .B47 2018 
082 0 4 |a 512/.23  |2 23 
049 |a UAMI 
100 1 |a Berkovich, Yakov G. 
245 1 0 |a Yakov Berkovich; Zvonimir Janko. 
260 |a Berlin/Boston :  |b De Gruyter, Inc.,  |c 2018. 
300 |a 1 online resource (410 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a De Gruyter Expositions in Mathematics Ser. ;  |v v. 65 
588 0 |a Print version record. 
505 0 |6 880-01  |a Intro; Contents; List of definitions and notations; Preface; 257 Nonabelian p-groups with exactly one minimal nonabelian subgroup of exponent> p; 258 2-groups with some prescribed minimal nonabelian subgroups; 259 Nonabelian p-groups, p> 2, all of whose minimal nonabelian subgroups are isomorphic to Mp3; 260 p-groups with many modular subgroups Mpn; 261 Nonabelian p-groups of exponent> p with a small number of maximal abelian subgroups of exponent> p; 262 Nonabelian p-groups all of whose subgroups are powerful. 
505 8 |a 270 p-groups all of whose Ak-subgroups for a fixed k> 1 are metacyclic 271 Two theorems of Blackburn; 272 Nonabelian p-groups all of whose maximal abelian subgroups, except one, are either cyclic or elementary abelian; 273 Nonabelian p-groups all of whose noncyclic maximal abelian subgroups are elementary abelian; 274 Non-Dedekindian p-groups in which any two nonnormal subgroups normalize each other; 275 Nonabelian p-groups with exactly p normal closures of minimal nonabelian subgroups; 276 2-groups all of whose maximal subgroups, except one, are Dedekindian. 
505 8 |a 277 p-groups with exactly two conjugate classes of nonnormal maximal cyclic subgroups 278 Nonmetacyclic p-groups all of whose maximal metacyclic subgroups have index p; 279 Subgroup characterization of some p-groups of maximal class and close to them; 280 Nonabelian p-groups all of whose maximal subgroups, except one, are minimal nonmetacyclic; 281 Nonabelian p-groups in which any two distinct minimal nonabelian subgroups have a cyclic intersection; 282 p-groups with large normal closures of nonnormal subgroups; 283 Nonabelian p-groups with many cyclic centralizers. 
505 8 |a 284 Nonabelian p-groups, p> 2, of exponent> p2 all of whose minimal nonabelian subgroups are of order p3 285 A generalization of Lemma 57.1; 286 Groups ofexponent p with many normal subgroups; 287 p-groups in which the intersection of any two nonincident subgroups is normal; 288 Nonabelian p-groups in which for every minimal nonabelian M M(x) = Z(M); 289 Non-Dedekindian p-groups all of whose maximal nonnormal subgroups are conjugate. 
500 |a 290 Non-Dedekindian p-groups G with a noncyclic proper subgroup H such that each subgroup which is nonincident with H is normal in G. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Finite groups. 
650 0 |a Group theory. 
650 6 |a Groupes finis. 
650 6 |a Théorie des groupes. 
650 7 |a Finite groups  |2 fast 
650 7 |a Group theory  |2 fast 
700 1 |a Janko, Zvonimir. 
776 0 8 |i Print version:  |a Berkovich, Yakov G.  |t Yakov Berkovich; Zvonimir Janko: Groups of Prime Power Order. Volume 6.  |d Berlin/Boston : De Gruyter, Inc., ©2018  |z 9783110530971 
830 0 |a De Gruyter Expositions in Mathematics Ser. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1893815  |z Texto completo 
880 8 |6 505-01/(S  |a 263 Nonabelian 2-groups G with CG(x) ≤ H for all H ∈ Γ1 and x ∈ H − Z(G) 264 Nonabelian 2-groups of exponent ≥ 16 all of whose minimal nonabelian subgroups, except one, have order 8; 265 p-groups all of whose regular subgroups are either absolutely regular or of exponent p; 266 Nonabelian p-groups in which any two distinct minimal nonabelian subgroups with a nontrivial intersection are non-isomorphic; 267 Thompson's A × B lemma; 268 On automorphisms of some p-groups; 269 On critical subgroups of p-groups. 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5516054 
938 |a YBP Library Services  |b YANK  |n 13232800 
938 |a YBP Library Services  |b YANK  |n 15703447 
938 |a De Gruyter  |b DEGR  |n 9783110533149 
938 |a EBSCOhost  |b EBSC  |n 1893815 
994 |a 92  |b IZTAP