Cargando…

R deep learning essentials : a step-by-step guide to building deep learning models using TensorFlow, Keras, and MXNet /

This book demonstrates how to use deep Learning in R for machine learning, image classification, and natural language processing. It covers topics such as convolutional networks, recurrent neural networks, transfer learning and deep learning in the cloud. By the end of this book, you will be able to...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Hodnett, Mark (Autor), Wiley, Joshua F. (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham : Packt Publishing Ltd, 2018.
Edición:Second edition.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBSCO_on1051140715
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |n|---|||||
008 180908s2018 enk o 001 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d YDX  |d TEFOD  |d MERUC  |d IDB  |d OCLCQ  |d CHVBK  |d N$T  |d OCLCF  |d ZCU  |d OCLCQ  |d K6U  |d OCLCO  |d OCLCQ  |d OCLCO  |d NZAUC  |d OCLCQ  |d PSYSI  |d OCLCQ  |d OCLCO 
019 |a 1051075116  |a 1079363066 
020 |a 9781788997805 
020 |a 1788997808 
020 |z 178899289X 
020 |z 9781788992893 
029 1 |a AU@  |b 000065045341 
029 1 |a AU@  |b 000065067245 
029 1 |a CHNEW  |b 001025904 
029 1 |a CHVBK  |b 549247211 
035 |a (OCoLC)1051140715  |z (OCoLC)1051075116  |z (OCoLC)1079363066 
037 |a 1BBFB26C-0C51-4300-AD4D-8E976B58BE8E  |b OverDrive, Inc.  |n http://www.overdrive.com 
050 4 |a QA276.45.R3  |b .H636 2018 
072 7 |a MAT  |x 003000  |2 bisacsh 
072 7 |a MAT  |x 029000  |2 bisacsh 
082 0 4 |a 519.502855133  |2 23 
049 |a UAMI 
100 1 |a Hodnett, Mark,  |e author. 
245 1 0 |a R deep learning essentials :  |b a step-by-step guide to building deep learning models using TensorFlow, Keras, and MXNet /  |c Mark Hodnett, Joshua F. Wiley. 
250 |a Second edition. 
260 |a Birmingham :  |b Packt Publishing Ltd,  |c 2018. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
500 |a Includes index. 
520 |a This book demonstrates how to use deep Learning in R for machine learning, image classification, and natural language processing. It covers topics such as convolutional networks, recurrent neural networks, transfer learning and deep learning in the cloud. By the end of this book, you will be able to apply deep learning to real-world projects. 
505 0 |a Cover; Title Page; Copyright and Credits; Packt Upsell; Contributors; Table of Contents; Preface; Chapter 1: Getting Started with Deep Learning; What is deep learning?; A conceptual overview of neural networks; Neural networks as an extension of linear regression; Neural networks as a network of memory cells; Deep neural networks; Some common myths about deep learning; Setting up your R environment; Deep learning frameworks for R; MXNet; Keras; Do I need a GPU (and what is it, anyway)?; Setting up reproducible results; Summary; Chapter 2: Training a Prediction Model; Neural networks in R. 
505 8 |a Building neural network modelsGenerating predictions from a neural network; The problem of overfitting data -- the consequences explained; Use case -- building and applying a neural network; Summary; Chapter 3: Deep Learning Fundamentals; Building neural networks from scratch in R; Neural network web application; Neural network code; Back to deep learning; The symbol, X, y, and ctx parameters; The num.round and begin.round parameters; The optimizer parameter; The initializer parameter; The eval.metric and eval.data parameters; The epoch.end.callback parameter; The array.batch.size parameter. 
505 8 |a Using regularization to overcome overfittingL1 penalty; L1 penalty in action; L2 penalty; L2 penalty in action; Weight decay (L2 penalty in neural networks); Ensembles and model-averaging; Use case -- improving out-of-sample model performance using dropout; Summary; Chapter 4: Training Deep Prediction Models; Getting started with deep feedforward neural networks; Activation functions; Introduction to the MXNet deep learning library; Deep learning layers; Building a deep learning model; Use case -- using MXNet for classification and regression; Data download and exploration. 
505 8 |a Preparing the data for our modelsThe binary classification model; The regression model; Improving the binary classification model; The unreasonable effectiveness of data; Summary; Chapter 5: Image Classification Using Convolutional Neural Networks; CNNs; Convolutional layers; Pooling layers; Dropout; Flatten layers, dense layers, and softmax; Image classification using the MXNet library; Base model (no convolutional layers); LeNet; Classification using the fashion MNIST dataset; References/further reading; Summary; Chapter 6: Tuning and Optimizing Models. 
505 8 |a Evaluation metrics and evaluating performanceTypes of evaluation metric; Evaluating performance; Data preparation; Different data distributions; Data partition between training, test, and validation sets; Standardization; Data leakage; Data augmentation; Using data augmentation to increase the training data; Test time augmentation; Using data augmentation in deep learning libraries; Tuning hyperparameters; Grid search; Random search; Use case-using LIME for interpretability; Model interpretability with LIME; Summary; Chapter 7: Natural Language Processing Using Deep Learning. 
500 |a Document classification. 
588 0 |a Print version record. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a R (Computer program language) 
650 0 |a Artificial intelligence. 
650 0 |a Machine learning. 
650 0 |a Neural networks (Computer science) 
650 2 |a Artificial Intelligence 
650 2 |a Neural Networks, Computer 
650 2 |a Machine Learning 
650 6 |a R (Langage de programmation) 
650 6 |a Intelligence artificielle. 
650 6 |a Apprentissage automatique. 
650 6 |a Réseaux neuronaux (Informatique) 
650 7 |a artificial intelligence.  |2 aat 
650 7 |a MATHEMATICS  |x Applied.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Probability & Statistics  |x General.  |2 bisacsh 
650 7 |a Artificial intelligence  |2 fast 
650 7 |a Machine learning  |2 fast 
650 7 |a Neural networks (Computer science)  |2 fast 
650 7 |a R (Computer program language)  |2 fast 
700 1 |a Wiley, Joshua F.,  |e author. 
776 0 8 |i Print version:  |a Hodnett, Mark.  |t R Deep Learning Essentials : A Step-By-step Guide to Building Deep Learning Models Using TensorFlow, Keras, and MXNet, 2nd Edition.  |d Birmingham : Packt Publishing Ltd, ©2018  |z 9781788992893 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1879523  |z Texto completo 
938 |a EBL - Ebook Library  |b EBLB  |n EBL5501083 
938 |a EBSCOhost  |b EBSC  |n 1879523 
938 |a YBP Library Services  |b YANK  |n 15687049 
994 |a 92  |b IZTAP