Cargando…

Partial differential equations in fluid mechanics /

A selection of survey articles and original research papers in mathematical fluid mechanics, for both researchers and graduate students.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Fefferman, Charles, 1949- (Editor ), Robinson, James C. (James Cooper), 1969- (Editor ), Rodrigo, Jose L. (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge, United Kingdom : Cambridge University Press, 2018.
Colección:London Mathematical Society lecture note series ; 452.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ii 4500
001 EBSCO_on1050360643
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu|||unuuu
008 180831s2018 enk ob 000 0 eng d
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d N$T  |d EBLCP  |d YDX  |d OCLCF  |d LVT  |d AU@  |d UKAHL  |d UAB  |d OCLCQ  |d OCLCO  |d OCLCQ 
066 |c (S 
019 |a 1050600599 
020 |a 9781316997031  |q (electronic bk.) 
020 |a 1316997030  |q (electronic bk.) 
020 |z 1108460968 
020 |z 9781108460965 
035 |a (OCoLC)1050360643  |z (OCoLC)1050600599 
050 4 |a QA374 
072 7 |a TEC  |x 014000  |2 bisacsh 
082 0 4 |a 532  |2 23 
049 |a UAMI 
245 0 0 |a Partial differential equations in fluid mechanics /  |c edited by Charles L. Fefferman, James C. Robinson, José L. Rodrigo. 
264 1 |a Cambridge, United Kingdom :  |b Cambridge University Press,  |c 2018. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a London Mathematical Society lecture note series ;  |v 452 
504 |a Includes bibliographical references. 
588 |a Online resource; title from PDF title page (EBSCO, viewed September 6, 2018). 
505 0 |a Cover; Series information; Title page; Copyright information; Table of contents; List of contributors; Preface; 1 Remarks on recent advances concerning boundary effects and the vanishing viscosity limit of the Navier-Stokes equations; Abstract; 1.1 Introduction and uniform estimates; 1.2 Kato criterion for convergence to the regular solution; 1.3 Mathematical and physical interpretation of Theorem 1.3; 1.3.1 Recirculation; 1.3.2 The Prandtl equations and the Stewartson triple-deck ansatz; 1.3.3 Von Karman turbulent Layer; 1.3.4 Energy limit and d'Alembert paradox 
505 8 |a 1.4 Kato's criterion, anomalous energy dissipation, and turbulenceReferences; 2 Time-periodic flow of a viscous liquid past a body; Abstract; 2.1 Introduction; 2.2 Notation; 2.3 Preliminaries; 2.4 An Embedding Theorem; 2.5 Linearized Problem; 2.6 Fully Nonlinear Problem; Acknowledgements; References; 3 The Rayleigh-Taylor instability in buoyancy-driven variable density turbulence; Abstract; 3.1 Background to the Rayleigh-Taylor instability; 3.2 The 3D Cahn-Hilliard-Navier-Stokes equations; 3.3 The variable density model for two incompressible miscible fluids; 3.3.1 The mathematical model 
505 8 |a 5 Quasi-invariance for the Navier-Stokes equations5.1 Introduction; 5.2 Navier-Stokes equations; 5.3 Burgers equation; 5.4 Use of critical dependent variables; 5.5 Cole-Hopf transform and Feynman-Kac formula; 5.6 Dynamic scaling transform; 5.6.1 Change of probability measures; 5.6.2 Leray equations; 5.6.3 Navier-Stokes equations; 5.7 Summary; Appendix A Wiener process; References; 6 Leray's fundamental work on the Navier-Stokes equations: a modern review of "Sur le mouvement d'un liquide visqueux emplissant l'espace"; Abstract; 6.1 Introduction; 6.1.1 Preliminaries; 6.1.2 The Oseen kernel T 
505 8 |a 6.2 The Stokes equations6.2.1 A general forcing F; 6.2.2 A forcing of the form F = −(Y · ∇)Y; Notes; 6.3 Strong solutions of the Navier-Stokes equations; 6.3.1 Properties of strong solutions; 6.3.2 Local existence and uniqueness of strong solutions; 6.3.3 Characterisation of singularities; 6.3.4 Semi-strong solutions; Notes; 6.4 Weak solutions of the Navier-Stokes equations; 6.4.1 Well-posedness for the regularised equations; 6.4.2 Global existence of a weak solution; 6.4.3 Structure of the weak solution; Notes; Acknowledgements; 6.5 Appendix; 6.5.1 The heat equation and the heat kernel 
520 |a A selection of survey articles and original research papers in mathematical fluid mechanics, for both researchers and graduate students. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Fluid mechanics. 
650 0 |a Differential equations, Partial. 
650 6 |a Mécanique des fluides. 
650 6 |a Équations aux dérivées partielles. 
650 7 |a TECHNOLOGY & ENGINEERING  |x Hydraulics.  |2 bisacsh 
650 7 |a Differential equations, Partial.  |2 fast  |0 (OCoLC)fst00893484 
650 7 |a Fluid mechanics.  |2 fast  |0 (OCoLC)fst00927999 
700 1 |a Fefferman, Charles,  |d 1949-  |e editor. 
700 1 |a Robinson, James C.  |q (James Cooper),  |d 1969-  |e editor. 
700 1 |a Rodrigo, Jose L.,  |e editor. 
776 0 8 |i Print version:  |t Partial differential equations in fluid mechanics.  |d Cambridge, United Kingdom : Cambridge University Press, 2018  |z 1108460968  |z 9781108460965  |w (OCoLC)1042353796 
830 0 |a London Mathematical Society lecture note series ;  |v 452. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1875106  |z Texto completo 
880 8 |6 505-00/(S  |a 3.3.2 The roles played by θ = ln ρ and ∇θ3.3.3 Summary of the D[sub(m)]-method used for the Navier-Stokes equations; 3.4 Some L[sup(2m)]-estimates on ∇θ and ω; 3.4.1 Definitions; 3.4.2 The evolution of D[sub(1,θ)]; References; 4 On localization and quantitative uniqueness for elliptic partial differential equations; Abstract; 4.1 Introduction; 4.2 A lower bound for the decay of Δu = W∇u + V u; 4.3 A construction of a localized solution; 4.4 A construction of a solution vanishing of high order; 4.5 The equation Δu = Vu; Acknowledgments; References 
938 |a Askews and Holts Library Services  |b ASKH  |n AH37002044 
938 |a YBP Library Services  |b YANK  |n 15307980 
938 |a Askews and Holts Library Services  |b ASKH  |n AH35135998 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5500403 
938 |a EBSCOhost  |b EBSC  |n 1875106 
938 |a YBP Library Services  |b YANK  |n 15676637 
994 |a 92  |b IZTAP