|
|
|
|
LEADER |
00000cam a2200000Ii 4500 |
001 |
EBSCO_on1050360643 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr cnu|||unuuu |
008 |
180831s2018 enk ob 000 0 eng d |
040 |
|
|
|a N$T
|b eng
|e rda
|e pn
|c N$T
|d N$T
|d EBLCP
|d YDX
|d OCLCF
|d LVT
|d AU@
|d UKAHL
|d UAB
|d OCLCQ
|d OCLCO
|d OCLCQ
|
066 |
|
|
|c (S
|
019 |
|
|
|a 1050600599
|
020 |
|
|
|a 9781316997031
|q (electronic bk.)
|
020 |
|
|
|a 1316997030
|q (electronic bk.)
|
020 |
|
|
|z 1108460968
|
020 |
|
|
|z 9781108460965
|
035 |
|
|
|a (OCoLC)1050360643
|z (OCoLC)1050600599
|
050 |
|
4 |
|a QA374
|
072 |
|
7 |
|a TEC
|x 014000
|2 bisacsh
|
082 |
0 |
4 |
|a 532
|2 23
|
049 |
|
|
|a UAMI
|
245 |
0 |
0 |
|a Partial differential equations in fluid mechanics /
|c edited by Charles L. Fefferman, James C. Robinson, José L. Rodrigo.
|
264 |
|
1 |
|a Cambridge, United Kingdom :
|b Cambridge University Press,
|c 2018.
|
300 |
|
|
|a 1 online resource
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a London Mathematical Society lecture note series ;
|v 452
|
504 |
|
|
|a Includes bibliographical references.
|
588 |
|
|
|a Online resource; title from PDF title page (EBSCO, viewed September 6, 2018).
|
505 |
0 |
|
|a Cover; Series information; Title page; Copyright information; Table of contents; List of contributors; Preface; 1 Remarks on recent advances concerning boundary effects and the vanishing viscosity limit of the Navier-Stokes equations; Abstract; 1.1 Introduction and uniform estimates; 1.2 Kato criterion for convergence to the regular solution; 1.3 Mathematical and physical interpretation of Theorem 1.3; 1.3.1 Recirculation; 1.3.2 The Prandtl equations and the Stewartson triple-deck ansatz; 1.3.3 Von Karman turbulent Layer; 1.3.4 Energy limit and d'Alembert paradox
|
505 |
8 |
|
|a 1.4 Kato's criterion, anomalous energy dissipation, and turbulenceReferences; 2 Time-periodic flow of a viscous liquid past a body; Abstract; 2.1 Introduction; 2.2 Notation; 2.3 Preliminaries; 2.4 An Embedding Theorem; 2.5 Linearized Problem; 2.6 Fully Nonlinear Problem; Acknowledgements; References; 3 The Rayleigh-Taylor instability in buoyancy-driven variable density turbulence; Abstract; 3.1 Background to the Rayleigh-Taylor instability; 3.2 The 3D Cahn-Hilliard-Navier-Stokes equations; 3.3 The variable density model for two incompressible miscible fluids; 3.3.1 The mathematical model
|
505 |
8 |
|
|a 5 Quasi-invariance for the Navier-Stokes equations5.1 Introduction; 5.2 Navier-Stokes equations; 5.3 Burgers equation; 5.4 Use of critical dependent variables; 5.5 Cole-Hopf transform and Feynman-Kac formula; 5.6 Dynamic scaling transform; 5.6.1 Change of probability measures; 5.6.2 Leray equations; 5.6.3 Navier-Stokes equations; 5.7 Summary; Appendix A Wiener process; References; 6 Leray's fundamental work on the Navier-Stokes equations: a modern review of "Sur le mouvement d'un liquide visqueux emplissant l'espace"; Abstract; 6.1 Introduction; 6.1.1 Preliminaries; 6.1.2 The Oseen kernel T
|
505 |
8 |
|
|a 6.2 The Stokes equations6.2.1 A general forcing F; 6.2.2 A forcing of the form F = −(Y · ∇)Y; Notes; 6.3 Strong solutions of the Navier-Stokes equations; 6.3.1 Properties of strong solutions; 6.3.2 Local existence and uniqueness of strong solutions; 6.3.3 Characterisation of singularities; 6.3.4 Semi-strong solutions; Notes; 6.4 Weak solutions of the Navier-Stokes equations; 6.4.1 Well-posedness for the regularised equations; 6.4.2 Global existence of a weak solution; 6.4.3 Structure of the weak solution; Notes; Acknowledgements; 6.5 Appendix; 6.5.1 The heat equation and the heat kernel
|
520 |
|
|
|a A selection of survey articles and original research papers in mathematical fluid mechanics, for both researchers and graduate students.
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a Fluid mechanics.
|
650 |
|
0 |
|a Differential equations, Partial.
|
650 |
|
6 |
|a Mécanique des fluides.
|
650 |
|
6 |
|a Équations aux dérivées partielles.
|
650 |
|
7 |
|a TECHNOLOGY & ENGINEERING
|x Hydraulics.
|2 bisacsh
|
650 |
|
7 |
|a Differential equations, Partial.
|2 fast
|0 (OCoLC)fst00893484
|
650 |
|
7 |
|a Fluid mechanics.
|2 fast
|0 (OCoLC)fst00927999
|
700 |
1 |
|
|a Fefferman, Charles,
|d 1949-
|e editor.
|
700 |
1 |
|
|a Robinson, James C.
|q (James Cooper),
|d 1969-
|e editor.
|
700 |
1 |
|
|a Rodrigo, Jose L.,
|e editor.
|
776 |
0 |
8 |
|i Print version:
|t Partial differential equations in fluid mechanics.
|d Cambridge, United Kingdom : Cambridge University Press, 2018
|z 1108460968
|z 9781108460965
|w (OCoLC)1042353796
|
830 |
|
0 |
|a London Mathematical Society lecture note series ;
|v 452.
|
856 |
4 |
0 |
|u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1875106
|z Texto completo
|
880 |
8 |
|
|6 505-00/(S
|a 3.3.2 The roles played by θ = ln ρ and ∇θ3.3.3 Summary of the D[sub(m)]-method used for the Navier-Stokes equations; 3.4 Some L[sup(2m)]-estimates on ∇θ and ω; 3.4.1 Definitions; 3.4.2 The evolution of D[sub(1,θ)]; References; 4 On localization and quantitative uniqueness for elliptic partial differential equations; Abstract; 4.1 Introduction; 4.2 A lower bound for the decay of Δu = W∇u + V u; 4.3 A construction of a localized solution; 4.4 A construction of a solution vanishing of high order; 4.5 The equation Δu = Vu; Acknowledgments; References
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH37002044
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 15307980
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH35135998
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL5500403
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 1875106
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 15676637
|
994 |
|
|
|a 92
|b IZTAP
|