|
|
|
|
LEADER |
00000cam a2200000Ii 4500 |
001 |
EBSCO_on1050321250 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr mn||||||||| |
008 |
180830t20182018enka ob 001 0 eng d |
040 |
|
|
|a N$T
|b eng
|e rda
|e pn
|c N$T
|d YDX
|d EBLCP
|d UIU
|d OTZ
|d U3W
|d OCLCO
|d CAMBR
|d TKN
|d OSU
|d UKAHL
|d OCLCQ
|d K6U
|d OCLCO
|d OCLCQ
|d S9M
|
019 |
|
|
|a 1049823368
|a 1089758622
|a 1242481879
|
020 |
|
|
|a 9781108593656
|q (electronic bk.)
|
020 |
|
|
|a 1108593658
|q (electronic bk.)
|
020 |
|
|
|a 9781108349161
|q (electronic bk.)
|
020 |
|
|
|a 1108349161
|q (electronic bk.)
|
020 |
|
|
|z 9781108425810
|q (hardcover)
|
020 |
|
|
|z 110842581X
|q (hardcover)
|
029 |
1 |
|
|a AU@
|b 000063995621
|
035 |
|
|
|a (OCoLC)1050321250
|z (OCoLC)1049823368
|z (OCoLC)1089758622
|z (OCoLC)1242481879
|
050 |
|
4 |
|a QA612.7
|b .S39 2018eb
|
072 |
|
7 |
|a MAT
|x 038000
|2 bisacsh
|
082 |
0 |
4 |
|a 514/.24
|2 23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Schwede, Stefan,
|e author.
|
245 |
1 |
0 |
|a Global homotopy theory /
|c Stefan Schwede, Rheinische Friedrich-Wilhelms-Universität, Bonn.
|
264 |
|
1 |
|a Cambridge ;
|a New York, NY :
|b Cambridge University Press,
|c 2018.
|
264 |
|
4 |
|c ©2018
|
300 |
|
|
|a 1 online resource (xviii, 828 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a New Mathematical Monographs ;
|v 34
|
520 |
|
|
|a A comprehensive, self-contained approach to global equivariant homotopy theory, with many detailed examples and sample calculations.
|
520 |
|
|
|a Equivariant homotopy theory started from geometrically motivated questions about symmetries of manifolds. Several important equivariant phenomena occur not just for a particular group, but in a uniform way for all groups. Prominent examples include stable homotopy, K-theory or bordism. Global equivariant homotopy theory studies such uniform phenomena, i.e. universal symmetries encoded by simultaneous and compatible actions of all compact Lie groups. This book introduces graduate students and researchers to global equivariant homotopy theory. The framework is based on the new notion of global equivalences for orthogonal spectra, a much finer notion of equivalence than is traditionally considered. The treatment is largely self-contained and contains many examples, making it suitable as a textbook for an advanced graduate class. At the same time, the book is a comprehensive research monograph with detailed calculations that reveal the intrinsic beauty of global equivariant phenomena.
|
504 |
|
|
|a Includes bibliographical references and index.
|
505 |
0 |
|
|a Unstable global homotopy theory -- Ultra-commutative monoids -- Equivariant stable homotopy theory -- Global stable homotopy theory -- Ultra-commutative ring spectra -- Global thom and K-theory spectra.
|
588 |
0 |
|
|a Print version record.
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a Homotopy theory
|x History.
|
650 |
|
0 |
|a Homotopy theory.
|
650 |
|
6 |
|a Homotopie
|x Histoire.
|
650 |
|
6 |
|a Homotopie.
|
650 |
|
7 |
|a MATHEMATICS
|x Topology.
|2 bisacsh
|
650 |
|
7 |
|a Homotopía
|2 embne
|
650 |
|
7 |
|a Homotopy theory
|2 fast
|
655 |
|
7 |
|a History
|2 fast
|
776 |
0 |
8 |
|i Print version:
|a Schwede, Stefan.
|t Global homotopy theory.
|d Cambridge ; New York, NY : Cambridge University Press, 2018
|z 9781108425810
|w (DLC) 2018024667
|w (OCoLC)1029207219
|
830 |
|
0 |
|a New mathematical monographs ;
|v 34.
|
856 |
4 |
0 |
|u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1854884
|z Texto completo
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH35044503
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH35033862
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL5500358
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 1854884
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 15676601
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 15666359
|
994 |
|
|
|a 92
|b IZTAP
|